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Spiral vortices and Taylor vortices in the annulus between rotating cylinders
and the effect of an axial flow
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We present numerical simulations of vortices that appear via primary bifurcations out of the unstructured
circular Couette flow in the Taylor-Couette system with counter rotating as well as with corotating cylinders.
The full, time dependent Navier Stokes equations are solved with a combination of a finite difference and a
Galerkin method for a fixed axial periodicity length of the vortex patterns and for a finite system of aspect ratio
12 with rigid nonrotating ends in a setup with radius raje0.5. Differences in structure, dynamics, symmetry
properties, bifurcation, and stability behavior between spiral vortices with azimuthal wave nukhbetrd
and M =0 Taylor vortices are elucidated and compared in quantitative detail. Simulations in axially periodic
systems and in finite systems with stationary rigid ends are compared with experimental spiral data. In a second
part of the paper we determine how the above listed properties dfithel, 0, and 1 vortex structures are
changed by an externally imposed axial through flow with Reynolds numbers in the rangeRe4040.

Among other things we investigate when left handed or right handed spirals or toroidally closed vortices are
preferred.
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I. INTRODUCTION rotation of the spiral vortices is also reflected by the fact that
) ) o the axial phase velocitiew/,n=w/k=¢@spM/k of a L-SPI

Spiral vortices appearing in the annular gap between thenm >0) and of a R-SP(M <0) are opposite to each other;
concentric rotating cylinders of the Taylor-Couette systensee Fig. 1. By the same token the rotationally symmetric
[1] are a rather interesting example of the spontaneous fofm=0) structure of toroidally closed Taylor vortices is sta-
mation of_a helicoidal structure out of a homo_geneous Statﬁonary(w:O): the lines of constant phases being parallel to
of a nonlinear forced system when the forcing exceeds e azimuthal CCF the latter cannot advect these vortices.
critical threshold. Like the competing toroidally closed Tay- However, an externally imposed axial through-flow can ad-
lor vortices the spiral vortex structures bifurcate out of the, ot Taylor vortices as well as spiral vortices.

unstructured basic state of a circular Couette i@€F) that The external through-flow breaks the mirror symmetry

is stable at small rotation rates of the inner cylinder. Theoetween the L-SPI and R-SPI. It changes their rotation and

spiral pattern breaks the rotational symmetry of the annulag onagation dynamics as well as their structural properties

gap. It oscillates in time by rotating azimuthally as a whole, 5 their bifurcation behavior in different ways. This is the
thereby propagating axially. The Taylor vortex flgwVF), topic of our investigation.

on the other hand, is rotationally symmetric and stationary. | nis review[1] Tagg remarked that a systematic inves-

The spiral pattern is effectively one dimensiotléte the  iqaiion of nonaxisymmetric vortex states that appear via pri-
TVF) and stationary when seen from a comoving fr  mary bifurcations out of the CCF state started remarkably

the spiral fields do not depend on tieaxial coordinate, |46 'in the history of the Taylor-Couette problem. Krueger
and azimuthal angle separately but only via the combined

phase variablep=kz+M¢—-w(k,M)t. Here,k andM are the R-SPI (M=-1)
axial and azimuthal wave numbers, respectively, ansl the 1 K
frequency. In thep—z plane of an “unrolled” cylindrical sur- )
face the lines of constant phasé=¢,, are straight with Wop o

p ,

slope -M/k, as shown in Fig. 1. An azimuthal wave number
M >0 implies a left handed spirél-SPI) while M <0 refers

to right handed spiral@R-SP) with our convention of taking <

k to be positive. The L-SPI and R-SPI being mirror images
of each other under the operatian--z are symmetry de-
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generate flow states. Which of them is realized in a particular 5%
experimental or numerical setup depends on the initial con- .
ditions. i
With the lines of constant phase in tige-z plane being
oriented for both spiral types obliquely to the azimuthal 0
“wind” of the basic CCF both spirals are advectively rotated
by the latter like rigid objects. Their common angular veloc-  FIG. 1. (Color onling Lines of constant phases;=const, for
ity is ¢sp=w(k,M)/M. This advection enforced rigid-body spirals in thep—z plane. Arrows indicate their velocities.
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al. [3] in 1966 predicted primary transitions to a nonaxisym- In Sec. Il we present the notation for describing the Taylor
metric rotating-wave flow which then were observed in ex-Couette system and we describe our numerical method. In
periments by Snydef4], who presented experimental evi- Sec. lll we review the spatio-temporal properties of TVF and
dence of different types of stable helical flgveferred to as  SP| solutions, and we present results on their bifurcation
“spirals”) a few years earlier. In 1985, an experimental sur-pehavior and flow structure in the absence of through-flow.
vey was published by Andereckt al. [5] which classified @ = |n particular we provide detailed comparisons of the bifurca-
large variety of different flow states, including some spiraltjon and structural properties of these primary vortex states.
types like linear, modulated, interpenetrating, wavy spiralsa|sg, comparisons with experiments are presented and dis-
etc. An extensive numerical linear stability analysis was then, ,ssed. In Sec. IV we elucidate the effect of an external

performed for a wide range of radius ratios by Langfetd throu . : :
o . gh-flow on structure, dynamics, and bifurcation proper-
al. [6]. At this time, Tagget al. [7] experimentally observed ties of TVF and SPI methods for counter-rotating cylinders

a transition from CCF to axially standing and azimuthally . . : :
traveling waves(ribbong and found numerically calculated and stationary outer cylinder. Section V contains a summary
gf the main results.

wave speeds to be in agreement with experimental result

Edwards[8] studied the transition from CCF to traveling

waves. More recent experiments were done with a system of Il. SYSTEM

radius ration=0.5[9]. Spiral solutions in a relatively narrow . .

gap with axially periodic boundary conditions were obtained _ & report results obtained numerically for a Taylor-

numerically with a pseudospectral method using corotatind-CUetté system with corotating and counter-rotating cylin-

helicoidal coordinates which were adapted to the expecteH€rs- The ratioy=r,/r of the radiir, andr; of the inner and

spiral [10]. outer (_:yllnders, resp_ectwely, was fixed at the valpe0.5
Various effects of an externally imposed axial through-for which also experiments have been made receSily

flow in the Taylor-Couette system have been explored since

the early 1930, so that the list of publications cannot be A. Theoretical description

discussed here—see, e.g., Rédl] for a partial and far from We consider the fluid in the annulus between the cylinders

complete compilation. We mention .here in addition a f‘E’W’to be isothermal and incompressible with a kinematic viscos-
more recent papers on selected topics beyond those listed i'l@/ v. The gap widthd=r,~r, is used as the unit of length

Ref.[11]: a linear analysis of the competition between shear, e ; ;
. : - . ) and the momentum diffusion time?/ v radially across the
and centrifugal instability mechanisnj42,13; linear SPI v y

: ) ap as the time unit so that velocities are reduced/oy To
and TVF fronts and pulsed4]; a weakly nonlinear bifurca- ghgracterize the driving of the system, we use th:n%l?eynolds
tion analysis of axially extended spiral, ribbon, and m'xednumbers
vortex states with homogeneous amplituf2d 5]; theoreti-
cal and numerical investigations of the nonlinear pattern se- Ry =r,Q4d/v; Ry=r1,0,d/v. (2.
lection in the absolutely unstable regime under downstrea
evolving intensity envelopefll]; theoretical and numerical
analyses of noise-sustained patterns in the convectively u
stable regime[16] (related experiments are listed in Ref.
[11]); and analysis of the changes in the noise sensitivit
across the convective-absolute stability bounddryj; and
measurements of velocity fields by particle image velocim
etry [18].

In this work we explore, in a detailed quantitative inves-
tigation, spatiotemporal structures as well as the bifurcation
properties of spirals and TVF in a setup with corotating and®
counter-rotating cylinders of a fixed radius raje 0.5 with AquU=vVau-(u-Viu- Vp. (2.2)
and without an externally imposed axial through-flow. Most )
calculations were done for axially periodic boundary condi-Here p denotes the pressure reducedgy/d” andp is the
tions that impose the wave length of the vortex pattern. HowMmass density of the fluid. Using cylindrical coordinates, the
ever, a few simulations of finite systems with rigid, nonro- velocity field
tating lids were also done to compare with experiments and
to study the effect of phase propagation suppressing bound-
aries. The calculations were done with a time dependent fis decomposed into a radial componentan azimuthal one
nite differences method in the-z plane combined with a v, and an axial onev.
spectral decomposition ip which by construction yields We have solved the resulting equations subject to no slip
only the stable flows. However, by selectively suppressingonditions at the cylinders. In Sec. Ill D we present simula-
destabilizing modes we also were able to trace out the urtions of systems with an axial siZé&=12 and rigid stationary
stable TVF and SPI solution branches. We do not include irends bounding the annulus axially in order to compare with
this work results on ribbong/], i.e., nonlinear combinations experiment$9]. For the main part c.f. Secs. lll and IV of this
of L and R spiralg[2] since they were unstable for the pa- work, however, we imposed, axially periodic boundary con-
rameters investigated here. ditions atz=0 andz=I"=1.6. So the axial wavelength of the

rq‘hese are just the reduced azimuthal velocities of the fluid at
rqbe inner and outer cylinders, respectively, wh@reand (),

are the respective angular velocities of the cylinders. The
))nner one is always rotating counterclockwise, so thaand

R, are positive. We explore positive as well as negative val-
_ues of R, corresponding to co-rotating as well as counter-
rotation of the cylinders, respectively. We also elucidate the
effect of an externally imposed axial through-flow.

Within the above described scaling, the Navier-Stokes
quation(NSE) takes the form

U= ue +ve,+Wwe, (2.3
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TVF and SPI patterns investigated therenis 1.6 and the This deviation significantly reduces for finer discretizations.
wave number ik=27/\=3.927. We also investigated how the nonlinear solutions change
when varying my,,, and/or the grid spacing. From these
analyses we conservatively conclude that typical SPI fre-
) . o ] quencies have an error of less than about 0.2 % and that
The calculations were done with a finite difference typical velocity field amplitudes can be off by about 3—4 %.
method in the -z plane combined with a spectral decompo- Time steps were always well below the von Neumann stabil-
sition in ¢. Since we have also been studying finite Iengthity criterion and by more than a factor of 3 below the
cylinders, say, with lids bounding the annulus vertically, herecoyrant-Friederichs-Lewy criterion. In order to trace out the
we do not use a spectral decomposition in the axial directiognstaple parts of bifurcation branches of TVF and SPI solu-

which for axially periodic systems are a generic alternativejons we applied different stabilization methods that are de-
The discretizatiorfa FTCS—or forward time, centered space g¢riped in Sec. 1Il B 1.

algorithm) has been done on staggered grids inrthe plane

following the procedure of Refl19]. It yields simple expres-

sions for the derivatives, it does not require boundary condi-  1ll. SPIRAL VORTICES AND TAYLOR VORTICES

tions for the pressure, and it avoids difficulties with bound- ) _ i ) ) )

ary conditions for more than one velocity field component at !N thiS section we first briefly review spatiotemporal prop-
the same position. We used homogeneous grids with discret"ies of spiral vorticegM #0) and Taylor vorticesM=0)
zation lengthsAr=Az=0.05 which have showed to be more N the absence of any externally enforced axial through-flow.

accurate than non-homogeneous grids. The time steps weftereM is the azimuthal wave number of the respective vor-

B. Numerical method

At< 1/3600. tex structure. Then we present our results on the bifurcation
Azimuthally all fieldsf=u,v,w,p were expanded as behavior ofM=0 andM=+1 vortex solutions and on their
flow structure.
Mmax _ They both grow out of the basic CCF statagcre
frozt)= 2 fur.znem. (2.4 =pccHr)e,, that is rotationally symmetric, axially homoge-
M=~Mmax

neous, and time translationally invariant. Here in our system
For the flows investigated here a truncation of the abovavith 7=1/2 theradial profile of its azimuthal velocity reads
Fourier expansion am,,,,=8 was sufficient to properly re-
solve the anharmonicities in the fields. The system of
coupled equations for the amplitudés(r,z,t) of the azi- veeHr) =T 3
muthal normal modes M, =M= M., iS solved with the

FTCS algorithm. Pressure and velocity fields are iteratively

adjusted to each other with the method of “artificial com- A. Spatiotemporal structure
pressibility” [20]

2R -Ry 4R -2Ry1 3.0
. .

The spiral vortex structure is periodic ip, z, andt. It

dp”=-8V -u" (0<B<1) (2.5 rotates uniformly as a whole like a rigid object in azimuthal
direction thereby translating with constant phase velocity in
p™Y = p + dp™, (2.6)  axial direction—the spiral field&(r, ¢,z,t) do not depend on

¢,z, andt separately but only the phase combination
u™d =y - ALV (dp™). (2.7

The pressure correctiop™ in the nth iteration step being

proportional to(nzq)e divergence af" is used to adapt the jere is the axial wave number that we always take to be
velocity field u'™*. The iteration loopEgs.(2.5—2.7)] is positive and w(k,M)is the frequency. Thus, with

executed for each azimuthal Fourier mode separately. It % ©,2,0)=F(r,¢), the spiral pattern is one dimensional
iterated untilV-u has become sufficiently small for eaoh Co'm[;a’ring the' F(;urier decompositions '

mode considered—the magnitude of the total divergence
never exceeded 0.02 and typically it was much smaller. After

¢ =kz+ Mo - w(k,M)t. (3.2

that the next FTCS time step was executed. f(r,0,2,) = 2 fialr )€™ = X F,(Ne" =F(r,¢),
For code validation we also compared SPI solutions with mn Y
experimentg9] and TVF solutions with previous numerical (3.33

simulations[11] and close to onset with Ginzburg-Landau

results[21]. Furthermore, we compared bifurcation thresh-one finds that

olds of the nonlinear SPI and TVF solutions with the respec- .

tive stability boundaries of the linearized N9B,14] ob- frun(r,t) = Smam€ M Fa(r). (3.3b
tained by a shooting method described in detail in RBf].

As expected from our experience with primary vortex struc-Thus only the mode combinatioms=nM appear in a SPI
tures in the Taylor-Couette and Rayleigh-Bénard problem liavith azimuthal wave numbevl.

the FTCS bifurcation thresholds for our discretization typi- The SPI phase is constanb,, on a cylindrical surface,
cally 1-2 % below the respective linear stability thresholdsr=const, along lines given by the equation
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M +w(k,M)Hl 3.4
Z K ¢ K k¢0- (3.4
Thus, on thegp—z plane of such an “unrolled” cylindrical
surface these lines of constant phase are straight with slope o
-M/k. And an azimuthal wave numbé >0 implies left .
handed spirals whil&1 <0 refer to right handed spirals with
our convention of taking to be positive. The L-SPI and |u] .
R-SPI being mirror images of each other under the operation = 4]
z— -z are symmetry degenerate flow states. Which of them 2
is realized in a particular experimental or numerical setup ,
depends on the initial conditions. 160 140
The lines of constant phase and with it the whole spiral
structure rotates ip with an angular velocity

o FIG. 2. (Color onling Order parameter bifurcation surfaces of
Pspl=—. (3.5 TVFs (thin line9 and SPIs(thick lines over the R;—R, plane.

M Shown are primary Fourier amplitudelsyy, |, of the radial flow
intensity at midgapr =r,+0.5, with axial mode index=+1. The

Its direction strongly depends on the inner cylinder’s rotation” " thal ian=0 for TVES andm= £ 1 for SPI ivel
due to the influence of the CCF. The latter decisively deter24/Muihal one 1Sn=4 lor 1Vi"S andm=2 L for SFIS, FeSPECtvely.
mines the shape of the linear spiral eigenmodes that ca'r'? each case ful{dashed lines denote stablgunstablé solutions.

grow beyond the stability boundary of the CCF state againshegion A B C D E
perturbations with an azimuthal wave numiér= 0. In the

parameter range explored here the spirals rotate in the sanma/F - stable  unstable stable stable
direction as the inner cylinder, i.e., in a positigedirection,  gpj stable } stable unstable  stable

so thatw(k,M)/M is always positive, i.e.w=sgr(M)|w|.
From this rigid rotation one immediately infers from Eq.

(3.2) that the axial phase velocity errors by at most 2 % from the linear stability analysis. How-

w M. ever, this difference can grow with externally applied
ph= 1 = | PSPl (3.6 through-flow up to, say, 5% at Re40 (cf. Sec. I\) when
the discretization is not refined.

W,

of a L-SPI(M > 0) is positive and that of a R-SPM <0) is
negative. 1. Radial flow amplitudes of TVF and SPI

For the rotationally symmetriéM =0) structure of toroi- The bifurcation of both, TVF and SPI solutions is forward
dally closed Taylor vortices the lines of constant phases args shown by the bifurcation surface over Re-R, plane of
parallel to g. This M=0 pattern is stationaryw=0). The  Fjg. 2. There the respective vortex solution is characterized
main reason for this is that the azimuthal flow of the basichy the primary Fourier amplitudéy,, |, of the radial flow
CCF state, being precisely parallel to the vortex lines of conintensity at midgap;=r;+0.5, taken as order parameter with
stant phase, cannot advect them. However, an axial meag denoting the azimuthal mode index andeferring to the
flow, being perpendicular to them, can advect them: an exaxial one, respectively. Thus, Fig. 2 sholwg 4| for the TVF
ternally enforced axial through-flow of Strength Re causes &o|ution by thin lines, anﬁJ1,1|:|U—1,1| for the two symmetry
nonzero axial phase velocity of the Taylor vortex pattern thajegenerateM = +1 solutions by thick lines, respectively. In
grows linearly with Re, at least when phase pinning effectsach case stableinstablg solutions are represented by full
are absent as for axially periodic boundary conditions. (dashedllines. The different stability regions labeled A—E are
explained in the caption of Fig. 2.

The stability of the vortex states refers to our system with
fixed axial periodicity length. Thus, e.g., Eckhaus or

In the parameter regime considered here the bifurcatioBenjamin-Feir instabilitie$22] that can destabilize periodic
thresholds for nonlinear SPI and TVF solutions, i.e., the lin-patterns in infinite and large systems do not occur here. Fur-
ear stability boundaries of the CCF state agaMst+1 and  thermore, our periodic boundary conditions allowing free
M=0 vortex perturbation§6] differ only slightly from each phase propagation enhance the existence range as well as the
other. For our fixed wave number &E3.927 they intersect stability range of SPI solutions in comparison with, say, Ek-
at (R;=95.25 R3=-73.69 where these two different vortex man vortex generating stationary lids that axially close the
modes are “bicritical” in the sense that their growth rates ar@nnulus in an experimental setup. The latter suppress phase
simultaneously zero. The stability boundaries were obtainegropagation in their vicinity so that phase generating and
with a shooting method from the linearized NSE. The non-phase destroying defects near opposite boundaries are neces-
linear SPI and TVF solutions, that were determined with thesary for the realization of spirals in the bulk of such systems.
numerical method described in Sec. 1l B give bifurcation In our setup TVF is folR,> R stable close to onset. And
thresholds that differ as a result of the FTCS discretizationt remains so at least up to the largest valueRa=130

B. Bifurcation behavior
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. . . ) . FIG. 4. (Color onling Linear frequencyw(Ry sty Of the M=1
FIG_. 3. (Color online Bifurcation dlagram_oM:_il spiral fre- spiral at onset,R, ..(Ry), in comparison with the frequency
quenciesw over the R;—R, plane. The thick line locates the ™R, ) [Eq. ‘(3.7)] resulting from a rigid-body rotation
minima. The different stability regions A—E of TVF and of SPI o4el.

solutions(cf. caption of Fig. 2in theR;—R, plane are included for

a better comparison with Fig. 2. .
P 9 shape of a cloth that hangs down from a frame given by the

h i Fig. 2—for | R. the TVF I q linear onset spiral frequencie®(R; ooy at the stability
shown in Fig. 2—ior jargeR, the eventually undergoes thresholdR; ¢.§R,) of the CCF. The location of minimab

an oscillatory instability. For more negati¥ <R, the TVF on the bifurcation surface is shown by a thick line in Fig. 3.

is unstable at onsetegion C in Fig. 3 but becomes stable at Thus, the nonlinear SPI frequencies are typically smaller

IargerRl In region E The unstable TVF solution branc.h ' than the linear ones but do not deviate substantially from
region C was obtained by suppressing any 0 modes in them

the field representatiof2.4), i.e., by allowing only rotation- Since the linear onset frequencies show a characteristic

ally symmetric solutions. Lifting this mode restriction infini- L . . o
tesimalm= 0 perturbations drive the system in the paramete?’anatlon along the bifurcation threshol sia{R,), that dic

region C of Fig. 2 away from the unstable TVF solution into tates t.he form of thg whole bifurcation surface, we d|spuss
a stable SPI state them in some detail. They, furthermore allow for a simple,

Spirals, on the other hand, are fes<R; stable close to yet semiquantitive _expla_lnanon of the phenomenon (_)f rigid
onset and remain so at least up to the largest valuR;of bOdY rotauon_of spirals in terms Of. a pﬁiswe. adyect|on dy-
=130 shown in Fig. 2 while foR,> R they are unstable at namics OfM_il_ vortex perturbationse . with Ime; of
onset(region D in Fig. 3. But then they become stable at constant.phaseg;s—kzﬂ\./lgp—g)t, that are oriented obllq_uely

. . . .~ to the “wind” of the basic azimuthal CCF. To that end, in Fig.
larger R; in region E. The unstable SPI solution branch in

. . . - 4 we compare the onset spiral frequeneyR; 4.0 at the
region D was obtained by suppressimg 0 contributions to o o sl i
the radial velocity fieldu at mid gap location. This stabilized ?tab'“ty thr?ﬂiggtlsRma*(Rﬁ). ?]f .theICCF V\Il'th tk:je mrc])del
the SPI solution against the growth of the TVF. Lifting this 'cdueéncye 1.sta) Which is also evaluated at the sta-
restriction of the available mode space the unstable SPI sdility thresholdR, si.{R). Here
lutions in region D decay into stable Taylor vortices. }

In the relatively large region E both, SPI as well as TVF model_ _ 2 f 0
solutions coexist bistably and the final vortex structure to be W™= (wccdr)) = r2-r2), wecdr)rdr (3.7)
found here depends on the initial conditions and the driving
history of R; andR,. Note in particular that for our periodic 5 the mean of the rotation rate of the CGhycr=vecdT

boundary conditions the region E with stable spirals extendg,r g, < the averaging is done over the radial domain be-
to positiveR,, i.e., to a situation with corotating cylinders. tyeen inner cylinder;,, and the first zeray, of vecr) [EQ.

1

2. SPI fregencies (3.1)]. Thus, at the stability thresholg, s,4R,) one has
In Fig. 3 the spiral frequencie® are plotted over the JR.— 4R
same control parameter range as the radial flow amplitudes r2= ﬂb, (3.9
in Fig. 2. Also here we include—for the sake of comparison 2R; — Ry stab

with Fig. 2—the identification of the different stability re-
gions of TVF and SPI solution by the symbols A-E ex- whenR,<0 However, wherR,=0, i.e., whervccr remains
plained in the caption of Fig. 2. At onsetagrees within the positive throughout the ga is replaced by ,. The restric-
numerical accuracy of our nonlinear code with the eigen+ion of the radial average to the range betweemndr is
value resulting from the linear stability analysis of the CCFmotivated by an argument of largely hand-waving nature: the
state. linear eigenfunctions for marginally stable SPI modes are
The nonlinear SPI frequencies further away from onsesomewhat centered to this range where the growth of vortex
vary smoothly: the bifurcation surface afin Fig. 3 has the perturbations is supported.
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FIG. 6. (Color online Anharmonicity of the TVF and SPI. The
ratios |u,/u,| of the axial Fourier modes of the profiles afz)

shown in Fig. 5 are displayed here as functiongRgffor fixed R,
=130. The bifurcation thresholds are located at the zeros. Param-
eters arep=0.5 andk=3.927.

FIG. 5. (Color onling Axial profiles of the radial velocity(z) at
the midgap position folR;=130 and variousR, (along the thick 1. Anharmonicity: TVF versus SPI
horizontal line in the insgtcovering the whole interval between the Typically SPIs are less anharmonic than TVFs. Also the
bifurcation thresholds marked TVF and SPI, respectively, in theprof”es of both are less anharmonic for positR@than for
inset; see also Flg 2. FL(HiaSheO“Ines refer to negatIVGpOSItlve) negatlveRz and the degree Of anharm0n|c|ty |ncreases When
R,. In each case the maximal radial outflow is chosen to lie at R, becomes more negative. For the mirror symmetric TVF
=0.5\. For better visibility two axial periods of the vortex profiles g anharmonicity growth comes from a widenifrgarrow-
are shown. ThéM =1 L-SPIs are propagating in positizalirection. ing) of the axial range\;, (A, of radial inflow over which
Parameters arg=0.5 andk=3.927. u<0 (u>0) and the corresponding decrea@ecreasg of

) . the inflow (outflow) velocity. For the L-SPI that propagate in

Figure 4 shows that the onset spiral frequenfR; s Fig. 5 in the positivez direction the anharmonicity grows
agrees perfectly well with the mean CCF rotation frequencymainly by flattening(steepeningthe wave profiles ahead of
[Eq. (3.7] whenR,>0. For R,<0 the model ansaté3.7)  (pehing the crests. However\;,/A,,, increases also for a
for the global spiral rotation rate overestimates slightly thesp| glpeit less than for a TVFE.
spiral frequency since Eq3.7) does not contain contribu-  The variation of the anharmonicity of the vortex profiles
tions from negative CCF rotation rates betwegandr,. N can be read off more quantitatively from the results of an
fact, if one extends in an ad hoc way the averaging domaiRyial Fourier analysis. To that end, in Fig. 6 we show the
slightly beyondr, then the agreement improves significantly. ratios|u,/u,| of the nth and first axial Fourier modes of the
Thus, the onset spiral frequena&yR; i, i-€., the frequency  profiles of Fig. 5 as a function oR, for fixed R;. With
eigenvalue can be seen as the mean rotation rate of thffowing distances from the bifurcation thresholds at positive
CCF—albeit weighted appropriately by the critical eigen-and negativéR, the anharmonicity grows for the TVF as well
functions. as for the SPI. It does so most precipitously near the thresh-
olds at negativeR, of about —150 in Fig. 6.

At negativeR, the anharmonicity of the TVF can be for

In this section we elucidate the flow structure of spiralrapidly counter-rotating cylinders already close to threshold
vortices in comparison with Taylor vortices. To that end weso large thatu,/u,|>1. This property reflects the fact that
consider the radial velocity field. In Fig. 5 we show the axialfor sufficiently negativeR, Taylor vortices are effectively
profiles ofu(z) at a midgap position foR; =130 being fixed smaller in size than the gap width. There are two main rea-
and variousR, that cover the whole interval between the sons for this size reduction which are both connected to the
bifurcation thresholdsécf. Fig. 2 and the inset of Fig.)5Full ~ tendency of vortices to have circular shap@$:the axial
(dashedgllines refer to negativépositive) R,. In each case the periodicity lengthh=1.6 reduces thaxial vortex size rela-
axial position of maximal radial outflow is chosen to lie at tive to the gap and, more importantlyi) the TVF intensity
z=0.5\. For the sake of better visibility two axial periods of is radially restricted not to extend significantly beyond the
the vortex profiles are shown. zero of the CCF at since according to the Rayleigh crite-

C. Flow structure of the TVF and SPI
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FIG. 7. Velocity field(u,w) of the TVF (left) and L-SPI(right) in anr—z plane. Vertical lines locate the zero of the azimuthal CCF flow
veeelr). Parameters ar@=0.5,k=3.927,R;=120, andR,=-100.

rion m=0 radial momentum transport is suppressed by oppolower SPI bifurcation threshol®,=-158. Thus, fast propa-
site pressure gradients for ry where the CCF stratification gating spirals at large negatii®, show the largest mirror
of the squared angular momentum density is stable. Wjth symmetry breaking.

becoming more negative, moves inwards and the radial
size of Taylor vortices reduce.

However, them=0 Rayleigh criterion does not apply to
the SPI. Theim+ 0 radial momentum transport extends fur-  In order to check our numerical results we made a few
ther beyond . Therefore SPI vortices fill out the whole gap comparisons with experiments. For example, in Fig. 8 we
more than Taylor vorticegcf. Fig. 7), and consequently they show the axial profile of the radial flow(z) of a L-SPI at
are less anharmonic. r,+0.4. Symbols denote laser-Doppler velocimetry measure-
ments[9] and the full line a numerical simulation, both done
in a setup height’=12 with rigid, nonrotating lids at both

The TVF shows axial mirror symmetry around the posi-ends of the annulus. In each case the spirals were monitored
tion of maximal radial outflowz=0.5\, in Fig. 5. In order to ~ at mid-height of the cylinders where they had the common
measure the degree to which this symmetry is broken in thevavelengthh =1.76. Since absolute experimental velocities

D. Comparison with experimental results

2. Mirror symmetry breaking of the SPI

SPI we have used the asymmetry parameter were not available we have scaled the experimental maxi-
mum in Fig. 8 to that of our simulatiocfull line). Without

f|u(z,) —u(-2)|dz knowledge of the experimental error-pars we con_sider the

agreement between symbols and full line to be satisfactory.

P

= ' (3.9 The dashed line shows a numerical profile obtained for
f|U(Z')+U(— Z)|dz axially periodic boundary conditions imposing the wave-
length A=1.6. It differs slightly from the SPI profilgfull
evaluated at midgap witll =0 locating the largest radial SPI line) in the bulk part of thel'=12 system with rigid ends.
outflow at thisr value. In this way we found, e.g., for the The difference is presumably related to the fact that the axial
spirals of Fig. 5, that the smalleBt=0.2 occurs for spirals flow, and in particular the mean-flow, (4.4, is different in
with the smallest frequenay,,=23.4 atR,=-74. Increas- these two cases as discussed in Sec. IV A 2.
ing R, from this value all the way toward the upper SPI  In Fig. 9 we compare the frequency variation of experi-
bifurcation threshold aR,=48 the frequency increases but mental and numerical L-SPI witR;. Symbols and the full
P remains roughly unchanged at about 0.2. On the otheline come from laser-Doppler velocimetry measurem¢ags
hand, when decreasirg, from -74 the asymmetry param- and numerical simulations, respectively, of the aforemen-
eter increases with increasing up to P=1 close to the tioned Taylor-Couette setufy=0.5 of height '=12 with
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FIG. 8. (Color onling Comparison of experimental and numeri- T B A B
cal axial profiles of the radial velocity(r,+0.4,z) of a L-SPI. For 105 110 115 120 125
better visibility more than one period is shown. Symbols and the R1

full line denote laser-Doppler velocimetry measuremd®isand
numerical simulations, respectively, of a Taylor-Couette setup of FIG. 9. (Color onlineg Comparison of the frequency variation of
heightI'=12 with rigid, nonrotating lids at both ends. Both refer to experimental and numerical L-SPIs wiiy. Symbols and the full
the bulk region at mid height with a common local wavelength ofline come from laser-Doppler velocimetry measuremgfisand
N=1.76. There the experimental maximum wfis scaled to our numerical simulations, respectively, of a Taylor-Couette sétpp
simulation result. The dashed line refers to a simulation done with=0.5) of heightI’=12 with rigid, nonrotating lids at both ends that
axially periodic conditions imposing a wavelengthxof1.6. Com-  enforce the net mean axial flogw) [Eq. (4.3)] to vanish. The
mon parameters arg=0.5 andR;=111, withR,=-95 for the ex-  dashed line refers to a simulation done with axially periodic condi-
periments and?,=-96 for the simulations. tions(A=1.6). They allow for a finite Reynolds-stress-sustairel

that is negative for our parameters. Upon subtracting this Galilean

rigid, non-rotating lids at both ends. Note that not only thecontribution <w>_k_ from the o_scillation fre_quency under perioplic
frequency values of these experimental and numerical S ounQary conditiongdashed ling one .obtalqs the.dash-dotted'l.me
states agree reasonably well with each other but also theipat lies close to the SPI freql.Jenmes with rigid end conditions.
existence range iR;. Its lower end marks the oscillatory ”noemmon parameters aR,=-96; howeverR,=-100 for the full
onset. At the upper end IR, these SPIs lose their stability to '

the TVF—in experiments as well as in the simulations. )

However, under axially periodic boundary conditions theSiZe J; Papr throughout the annulus. In the absence of any
existence range of stable SPIs extends to significantly largefortex flow, i.e., for sub-critical control parameters this pres-
values ofR; lying outside of the plot range of Fig. 9. The Sure gradient,d, papr, drives an annular Poiseuille flow
dashed line in Fig. 9 refers to simulations done with axially(APF) with a radial profile of the axial through-flow velocity
periodic conditiong\ = 1.6) that allow for a free propagation 9iven by
of phase. In addition, they allow the Reynolds-stress-

sustained mean axial flpwo [Eq._(4.4)] to have a finitenet 9, Pape| 1+

part(w) [Eq. (4.3)] that is negative for our parameters—cf. Wapr(r) = 4 (1- n)lm;ln r

Sec. IV A 2. In order to compare with the SPI frequencies for

rigid end conditions we subtract from the oscillation frequen- . (1+pinl-» 1 4.1)
cies under periodic boundary conditiogdashed ling the (1-n)ny (1-7)? )

pure Galilean contributiogw)k and obtain the dash-dotted

line. Note how close the latter lies to the SPI frequencies irw ; ; -
AT " . e checked that our numerical code reproduces this analyti-
the system with rigid end conditions. Thus, we find that the P y

SPI frequency differencefls] for the two different end cal solution(4.1) of the NSE. We use its mean to define the

boundary conditions are mostly due to whether the Galilear%hmugh_ﬂow Reynolds number by
contribution{w)k is suppressed or not.

w (r)>_Re__5szPF1_772+(1+772)|n Ui
apell)) = Re =
IV. EXTERNAL THROUGH-FLOW 8 (1-7%n 7y

Here we discuss the influence of an externally imposed (4.2

axial through-flow on spiral and Taylor vortices. Since the

effect of an axial through-flow on a TVF has been investi-Hence positivgnegativg Re implies an axial flompyapg(r),

gated forR,=0 in several works, we focus our investigation in the positive(negative z direction. The last equality in Eq.

on SPI vortices. (4.2) establishes the relation between the externally applied
The through-flow is enforced by adding in the NSE for additional axial pressure gradient and the through-flow Rey-

the axial velocity component a constant pressure gradient afolds number Re.
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4771 L spiral when Re=0. Note, however, the difference in size be-
 —— ] tween|w,,|=7.1 and|(w)|=1.1[23].
2,3_‘ '\‘\t ] A finite through-flow breaks the mirror symmetry be-
3 5[ e | tween theM=1 L-SPI and theM=-1 R-SPI. Their radial
2‘?‘ S . S i flow amplitudes evolve with through-flow as shown in Fig.
B A R N . @ 10(a). We performed also a linear stability analysis of the
— T — T combined CCF-APF state. It shows that for our control pa-
20 4 ja me 1 wsey % rametersR;=120 andR,=-100, the amplitudes of thi
Lo el Sty ,,of/:,—'_!' =+1 SPI solutions go to zero at the bifurcation threshold

;'5- 0 el values of Re=r19.07 and £50.95. The numerical solutions
10E _o’,,o' / ] of the full nonlinear NSE showed, in addition, that the L-SPI

1

I

(R-SP) is unstable near the first threshold, Rel9
L (Re=19), and that it is stable near the second one, Re
T =50 (Re=-50).
= For small through-flow—say, for <8 Re<6 in Fig. 10—
A == i the two spiral solutions coexist bistably; their particular re-
\;, 0 : alization depending on initial conditions. However, with in-
i 1 creasingR¢d that spiral suffers a through-flow enforced loss
L= . @] of stability for which the phase velocity changes sign. This
15 -10 -5 0 5 10 15 happens roughly when the through-flow has become suffi-
Re ciently strong to revert an originally adverse axial phase
propagation. For example, th®1=-1 R-SPI of Fig. 10
FIG. 10. (Color onling Influence of an external through-flow on propagates for small Re6.6 axially downwardsi.e., oppo-
vortex structures(@ Primary Fourier amplitudes of the radial flow site to the externally imposed through-flpws for Re=0,
field at midgap for thevi=1 L-SPI(uy 1), theM=-1 R-SPI(u-; 1),  then become stationary, and finally propagates upwards in
and for the TVF(ug 4). (b) Axial phase velocityw,n=w/k. () Net  through-flow direction for Re 6.6. Similarly, by symmetry,
mean axial flow(w) [Eq. (4.3)]. Full (dashedl lines with filled  the M=1 L-SPI propagates in a small negative through-flow
(open symbols refer to stablgunstablg states. Arrows indicate upwards against the through-flow for Re-6.6 and down-
transitions after loss of stability, see text for details. The TVF iswards, i.e., in through-flow direction for Re-6.6.

o

T
\ i b
\

g

I

unstable in the Re range shown here for our paramé&grsl 20, The direction of the imposed through-flow is the preferred
R,=-100, »=0.5, andk=3.927. one for stable phase propagation: A spiral that has started at
small|R¢ to move against the wind dies out—or, more pre-
A. Counter-rotating cylinders cisely, becomes unstable—when the wind becomes suffi-

) ] ciently strong to turn it back. Only that SPI is stable at large
Figure 10 shows how the through-flow influences the|rd =7.2 in Fig. 10 that keeps propagating into the preferred
L-SPI, R-SPI, and TVF at the fixed characteristic driving direction of the through-flow. The other one is unstable at
combinationR; =120 andR,=-100 that is located in Figs. 2 |arge|Rd.
and 3 in region C close to the border to region E. For this The through-flow enforced loss of stability of one SPI
parameter combination the TVF is unstable when Re=0 angtate and the transition to the remaining stable one is indi-
it remains unstable in the Re range shown in Fig. 10. This izated schematically in Fig. & by vertical arrows. How-
of relevance for the through-flow induced transitions be-ever, we should like to stress that the transition is somewhat
tween the L-SPI and R-SRtf. further belowy. complex extending over the through-flow intervaRe
=7.2 the center of which locates the zero wf, at |R¢
=6.6. In this interval there are stable, mixed states with fi-
nite L- and R-SPI modes. Their amplitudes seem to vary
In Fig. 1Q@a) we present primary Fourier amplitudés,, ,| largely continuously with Rewith possibly some saddle-
of the radial flow intensity at midgap versus Re. These areode discontinuity between the puréSPI) solutions: the
|uy 4| for the M=1 L-SPI Ju_, 4| for the M=-1 R-SPI, and amplitude of the spiral that loses the stability competition
|ug 4| for the TVF. Figure 1(b) shows their axial phase ve- decreases with growiniRe towards zero while the ampli-
locity, wyp=w/k, and Fig. 10c) shows thenet mean axial tude of the winning one increases from zero to the pure
flow monostable final SPI state.
Note that since the TVF is unstable for the parameters of
_ 1 f” frZ dr d 43 Fig. 10 it does not offer an alternative transition to a final
(w) = 2=y J, wir..z0rdrde. (4.3 2o state as for the parameters of Sec. IV B. There, for
' R,=0, the through-flow induces a transition to a stable
For Re=0 the two spirals are mirror images of each other{TVF) rather than to the stably coexisting SPI with preferred
their radial velocities are the same and all respective axigbropagation direction. Only when the TVF is eliminated
velocities have the same magnitude but opposite directiorthere does the transition occur to the then monostable
Note that the SPI Reynolds stresses drive an axial flow to bepiral—for details see Sec. IV B.
discussed further below. Its net medw) [Eq. (4.3)], is di- We also made a few calculations in a regime where
rected opposite to the phase velocity,, of the respective the TVF stably coexists with the SPI for counter-rotating

1. Bifurcation behavior
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the nonlinear Reynolds stresses. They are rather large. For
example for the R-SPI propagating at Re=0 in the negative-
z direction with phase velocity,,=~-7.1 the maximum of
wo(r) is about 3, i.e., directed opposite to the phase propaga-
tion and almost half as large in magnitudevag. The net
mean flow(w) [Eqg. (4.3)] is for this case still about 1.1 and
also opposite tavy,

As an aside we mention that rigid axial end conditions
enforce(w)=0 throughout the annulus. They generate an ad-
verse axial pressure gradient that compensates for the Rey-
nolds stressef25] so thatw, is practically zero in the bulk
part where SPIs are realized. Only in the Ekman regign

FIG. 11. (Color onling Radial profiles of the axial mean flow P€comes finite showing TVF behavior there. ,
wo(r) [Eq. (4.4)] of spirals shown in Fig. 10 for axial Reynolds  For the R-SPI of Fig. 11 propagating at R@ opposite to
numbers -4< Re< 14 increasing in steps of 2. The thick line refers the external through-flow the maximal mean flow is located
to Re=0. The transition from R- to L-SPI occurs around=Re cf.  roughly at midgap. However, for the SPI propagating in the
the text. Parameters aRy =120, R,=-100, #=0.5, andk=3.927. direction of the external through-flow, i.e., the R-SPI for
Re<0 and the L-SPI for Re-0, the extremum ofvy(r) is

cylinders. Also then the through-flow preferably induces ashifted_towards t_he inner Cylir_1der. T_he_mean flow profiles of
transition to a stable TVF state rather than to a stable SP€ Spirals of Fig. 11 are given within about 5% by the
state. Thus, when the through-flow destabilizes, e.g.Mhe SUPerposition

t:h;:rLI l';‘n-esl\il‘ ;hf-nstglplrﬁ;lg/etshwl =0 TVF modes grow rather Wo(r;Re) = wy(r;Re = 0 +Wapr(r;Re) (4.9

of the pure, Reynolds stress generated figRe=0 of the
2. Axial velocities v, Wo, and (w) respective SPI plus the pure, pressure gradient enforced APF

In the through-flow range shown in Fig. 10 the phaseﬂow Wape(Re) [EQ.(4.1)]. This holds for the L-SPI as well as

velocity wy, and the net mean flovw) vary roughly linearly fqr thg R-SPI irrespective of whethgr they propagate in the
with Re The slopesiw,,/dRe anddw)/JRe for the SPI direction of the through-flow or against it.
well as for the TVF are roughly 1.

While the phase of th&1=+1SPI reverts its propagation
direction at Re= = 6.6 the net mean flow changes sign al- The through-flow changes the structure of the SPI. This is
ready at Re= +1.2. The reversal of the latter does not seemdocumented in Figs. 12 and 13. The arrows in Fig. 12 rep-
to have any consequence. But the through-flow enforced réesenting thes,w vector field of the L-SPI in the~z plane
versal of the phase velocity seems to be responsible for thghow the effect of imposing an axial through-flow that in-
destabilization of the(SP)) that propagate at smalRg  creases from Re=~a) to Re=10(d) in steps of five. Note,

3. Spiral profiles

against the wind, i.e., in the “wrong” direction. however, that the externally imposed axial pressure gradient
In Fig. 11 we show how the radial profiles of the meandoes not just ad,pg(r) to the axial velocity fieldv. It also
axial flow, modifies all vector field components of the SPI. The axial
o profile of the radial flowu(z) for example is changed by the
Wo(r) = if w(r, ¢,z t)de, (4.4 thr_ough-flow as shown in Fig. 13 for increas_ing Re. He_re the
27 axial asymmetry of the upwards propagating L-SPI is re-

duced by steepening up the leading parti#) ahead of the
wave crests. This reduction of the mirror-asymmetry of the
radial flow of the L-SPI grows somewhat linearly with in-
creasing Re. As an aside we mention that, on the other hand,
¥he TVF profiles ofu(z) become with increasing Re more
and more asymmetric—the mirror asymmetry paraméter
[Eq. (3.9)] increases for the TVF linearly with Re.

of spirals shown in Fig. 10 evolve with the through-flow in
the range -4 Re=<14. We checked thaty, is independent
of zandt and that our spirals propagating in the externally
imposed axial pressure gradient still have the SPI symmetr
i.e., the flow fields depend an ¢, andt only via the phase
combination ¢ [Eqg. (3.2)] with an oscillation frequency
o that is modified by the through-flow. Then one finds from
the NSE for them=0 azimuthal mode of the axial velocity ] ]
field, B. Nonrotating outer cylinder

1 1 We have also investigated the influence of an externally

(ﬁr + ‘)ﬁrWo = (ar + _>(UW)0 + d,Po, (4.5 imposed axial through-flow on TVFs and SPIs for stationary
r r outer cylinder,R,=0.

that the SPI mean flow can be driven by Reynolds stresses
and/or by mean axial pressure gradients. For Re=0 the pres-
sure is enforced to be axially periodic, hengg,(Re=0 In Fig. 14 we show the bifurcation behavior of TVFs and
=0. So in that case the mean axial flow is driven solely bySPIs as a function of through-flow Reynolds number Re for

1. Bifurcation behavior
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FIG. 12. Velocity field(u,w) of the L-SPI in anr-z plane for Re

120, andR,=-100.

R]_:

100. This parameter combination lies well within a stable SPI at largiRe. A spiral that has started at small

the region E of Fig. 2 in which the TVF, L-SPI, and R-SPI |R€

RZZO, Rl:
are all stable at Re

to move against the through-flow becomes unstable when
the latter becomes sufficiently strong to turn it back. On

0.

Switching on the through-flow one sees in Fig(d4how
the dominant modes of these vortex structures vary with Rethe other hand, a SPI remains stable at a |gRg that

That SPI loses its stability for which the through-flow en- keeps propagating into the preferred direction of the

forces a reversal of the phase propagation as in the case tfrough-flow.

counter-rotating cylindergFig. 10). Thus, also here the di-

As in Fig. 10 the loss of stability takes place in the vicin-

rection of the imposed through-flow is the preferred one fority of the Reynolds number where the axial phase velocity
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FIG. 13. (Color online The effect of an external through-flow
on the axial profiles of the radial velocity of the L-SPI. Lines show  FIG. 15. (Color onling R;~Re phase diagram of the TVF,
u(z) at a midgap position for Re=-5 to Re=20 in steps of five. R-SPI, and L-SPI for a stationary outer cylinder. Solid lines repre-
Thick one refers to Re=0. In each case the maximal radial outflowpent linear stability thresholds of the basic flow, i.e., bifurcation
is chosen to lie az=0.5\. Parameters ar®; =130, R,=-100, 7 thresholds of the respective vortex solutions out of the combined
=0.5, and»=1.6. CCF-APF solution. Dashed lines are stability boundaries of the vor-
tex states. The phase diagram is symmetric underRRe. Param-

Wy [Fig. 14b)] of the respective SPI goes through zero. This€ters areR;=0, 7=0.5, andk=3.927.
happens in Fig. 14 for th®1=+1 SPI at Re= = 6.4. How- .
ever, here we found the transition from the then unstable SFﬁzeglon A B c D E F G H

to occur to the stable TVF solutidef. arrows in Fig. 148)]  TyE S S S u ; s S
rather than to the other stable SPI. R-SP| S y i X i u i i
We have also briefly investigated the situation where the
TVF solution was numerically eliminateghere, suppressing L-SPI s s s s s u u -
6F i : ; I K s: stable; u: unstable; -: nonexixtent.
L — _
=4 :I:N A _ : : ”
E |, e N m=0 modes of thei field at a midgap position turned out to
= o “w » be an efficient way to globally reduce the TVF towards
r \(a) 1 zero. Also then, the SPI that is unfavored by the through-
0 — e flow loses its stability. However, with the TVF being un-
T —. D o ® available as a final state the transition occurs in this case to
oQ[ VIV M=1 (RSPY v ] the favored SPI in a way that seems to be similar to the one
[ Ole M=0(TVF) v 1 described in Sec. IV A 1.

Without the above described numerically imposed mode
restriction the TVF is stable for moderate through-flow rates
while at sufficiently larggRe SPIs are stablg26-2§. For

w
| . |
N
oo o
\
G
M |

0.31 | = our parameters the TVF decays at-Re34 into anM

o 0.2 BEP o S =+1 SPI as indicated by arrows in Fig.(h:}l

DI: 0.1- ] For small through-flow the phase velocity, and the net

A O mean flow(w) vary roughly linearly with Re. The initial

‘;’ -0.1‘7/'/v 7 slopesow,,,/ d Re and&w)/J Re are, for SPIs as well as for
'g'g& e R TVFs, roughly 1. However, at larger Re one sees in Fig.
e Ti -20 0 20 40 14(c) that in particulaKw) shows nonlinear corrections.

Re

) ] 2. Phase diagram
FIG. 14.(Color onling Infiuence of an external through-flow on

vortex structures(a) Primary Fourier amplitudes of the radial flow ~ Figure 15 shows the phase diagram of the TVF, R-SPI,
field at midgap for the M=1L- SPI(uyq), the M=-1R- and L-SPI for stationary outer cylinder in the control param-
SPI(u_y 9, and for the TVF(ug ). (b) Axial phase velocityw,, eter plane spanned by Re aR¢g Theexistenceange of the
=w/k. (c) Net mean axial flow{w)—Re. Full (dashedl lines with ~ vortex states is bounded from below by the bifurcation
filled (open symbols refer to stabl@unstable states. Arrows indi-  threshold(full line in Fig. 15) of the respective vortex solu-
cate transitions after loss of stability, see text for details. Parametetson out of the combined CCF-APF basic state. These bifur-
areR;=100,R,=0, »=0.5, andk=3.927. cation thresholds result from a linear stability analysis of the
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CCF-APF stat¢14]. The one for the TVF increases quadrati- periodic and rigid end conditions do not differ much. On the
cally for small Re. Also the SPI threshold curves in Fig. 150ther hand, the respective frequencies differ basically by the
have a somewhat parabolic shape, but with minima shifted t&@alilean contributiorw)k Here (w) is the net axial mean
finite Re. Thus, the threshold for the L-SPI first decreases foflow that the nonlinear Reynolds stresses of a spiral with
small positive Re but eventually increases at larger Re. Byxial wave numbek sustains with axially periodic end con-
symmetry the R-SPI threshold curve in Fig. 15 is a mirrorditions but not with impermeable ends.

image under Re>—Re of the L-SPI threshold curve. Hence  Furthermore, we showed how the phenomenon of rigid
small through-flow destabilizegstabilizes the CCF-APF body rotation of spirals can be understood quantitatively in

flow direction. perturbations whose lines of constant phase are oriented ob-

Note that for small Re in Fig. 15 the TVF bifurcates first lauely to the azimuthal CCF. The onset spiral frequency is
when increasingR,. But for sufficiently large Re the bifur- € mean rotation rate of the CCF, albeit weighted appropri-
cation sequence of the TVF and SPI is reversed since th tely by the critical eigenfunctions with the consequence that

bifurcation threshold for the TVF curves up faster with in- € L-SPlas well as the R-SPI rotate in the same direction as

. . the inner cylinder. The nonlinear SPI frequencies are typi-
creasing Re than the one for the L-SPI. After their intersec- ; - )
tion stable SPIs bifurcate first out of the CCE-APE state cally smaller than the linear ones but do not deviate substan

: ) : tially from them.
Hence, for example in region E of Fig. 15, only stable L A finite through-flow breaks the mirror symmetry be-
-SPIs exist; in region D TVF exists, but only as an unstabléyyeen the L-SPI and R-SPI, and changes the structure of the
solution and in region B they both exist bistably. SPI. The externally imposed axial pressure gradient does not
The dashed lines in Fig. 15 are stability boundaries of thgyst add the annuiar Poiseuille flow,p((r) to the axial ve-
vortex solutions. Different regions of Fig. 15 between vari-|ocity field. It modifies thr SPI structure, e.g.,the profiles of
ous stability boundaries and bifurcation thresholds are identhe radial flow in a characteristic way.
tified with the respective stability properties of the vortex For Re=0 L-SPIs propagate axially upwards and R-SPIs
states in the caption of Fig. 15. downwards. When they are initially stable they continue to
coexist bistably for small through-flow. However, they are no
longer mirror images of each other and their phase velocities
V. SUMMARY differ by an amountxRe. Then, with increasingRe that
sspiral loses its stability for which the through-flow enforces
the phase velocity to change direction. Only that SPI is stable
at a large|Rd that keeps propagating into the preferred di-
rection of the through-flow. The other one is unstable at large

We have numerically simulated vortex flow structures o
different azimuthal wave numbeid in the Taylor-Couette
system with counter-rotating as well as with corotating cyl-
inders. In particular we have investigated the effect of a

externally imposed axial through-flow on the spatiotemporal’ "= - - .
properties and on the bifurcation behaviodk 1 L spirals, The SPI that loses stability upon reverting its propagation

. . direction —i.e. the R-SPIL-SPI) for positive (negativ

M=-1 R spirals, anc_M:O Taylor vortices. Re—preferentially underg(oes 2 trangition to( p?opageating

To that end we first have determined for zero through—ryvg provided the latter is available asstablevortex state.
flow, Re=0, the bifurcation surfaces of the appropriate ordepinerwise the transition is to the then monostable L-GRI
parameters characterizing SPI and TVF solutions over thgp)). Sych a situation was explored in detail for negafse
R;~R, control parameter plane of the inner and outer cylin-where the TVF was unstable and for other parameter combi-
der's Reynolds numbers. For the parameter combinations exmations where the TVF solution was eliminated numerically.
plored in this work these bifurcations out of the basic CCF  Also the situation where initially at Re=0 all three vortex
state are forward, and their order of appearance determingslutions are stable was elucidated for differ&tR, pa-
the stability of the respective bifurcating vortex state: therameter combinations and in more detail for a stationary
vortex solution that bifurcates second is unstable. But itouter cylinder,R,=0. Here, a complete phase diagram was
eventually becomes stable with increasing distance from thdetermined in the control parameter plane spanned by Re and
bifurcation threshold so that, e.g., for largey there is a R;. We found that a small through-flow destabilizesabi-
large region in thdR, — R, plane with bistability of TVFs and lizes) the basic CCF-APF state against spirals that propagate
SPIs. In particular the existence region of stable SPIs extendsto (agains} the through-flow direction. For sufficiently
for axially periodic boundary conditions even to positRe large Re the bifurcation sequence of TVFs and SPIs is re-
with corotating cylinders. Unstable solution branches wereversed since the bifurcation threshold for TVF curves up
obtained by selectively suppressing destabilizing modedaster with increasing Re than the one for the L-SPI. After
Stable ribbons, i.e., nonlinear combinationdw# +1 spirals  their intersection stable SPIs bifurcate first out of the CCF-
were not found. APF state. Then there opens up a region at sufficiently large

Simulations of axially finite systems with rigid, nonrotat- positive Re in which only stable L-SPI but no Taylor vortices
ing lids showed, in good agreement with experiments, howexist for stationary outer cylinder.
the stable existence range of SPIs is reduced by stationary
Ekman vortices which suppress phase propagation at the two
ends. Also the frequencies and wave profiles of the spiral This work was supported by the DFG. We thank A.
vortices in the bulk of the numerical and experimental sys-Schulz, J. Langenberg, and G. Pfister for communicating the
tems agreed well with each other. Spiral profiles obtained foexperimental data referred to in this paper.
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