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We present numerical simulations of vortices that appear via primary bifurcations out of the unstructured
circular Couette flow in the Taylor-Couette system with counter rotating as well as with corotating cylinders.
The full, time dependent Navier Stokes equations are solved with a combination of a finite difference and a
Galerkin method for a fixed axial periodicity length of the vortex patterns and for a finite system of aspect ratio
12 with rigid nonrotating ends in a setup with radius ratioh=0.5. Differences in structure, dynamics, symmetry
properties, bifurcation, and stability behavior between spiral vortices with azimuthal wave numbersM = ±1
and M =0 Taylor vortices are elucidated and compared in quantitative detail. Simulations in axially periodic
systems and in finite systems with stationary rigid ends are compared with experimental spiral data. In a second
part of the paper we determine how the above listed properties of theM =−1, 0, and 1 vortex structures are
changed by an externally imposed axial through flow with Reynolds numbers in the range −40øReø40.
Among other things we investigate when left handed or right handed spirals or toroidally closed vortices are
preferred.
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I. INTRODUCTION

Spiral vortices appearing in the annular gap between the
concentric rotating cylinders of the Taylor-Couette system
[1] are a rather interesting example of the spontaneous for-
mation of a helicoidal structure out of a homogeneous state
of a nonlinear forced system when the forcing exceeds a
critical threshold. Like the competing toroidally closed Tay-
lor vortices the spiral vortex structures bifurcate out of the
unstructured basic state of a circular Couette flow(CCF) that
is stable at small rotation rates of the inner cylinder. The
spiral pattern breaks the rotational symmetry of the annular
gap. It oscillates in time by rotating azimuthally as a whole,
thereby propagating axially. The Taylor vortex flow(TVF),
on the other hand, is rotationally symmetric and stationary.

The spiral pattern is effectively one dimensional(like the
TVF) and stationary when seen from a comoving frame[2]:
the spiral fields do not depend on timet, axial coordinatez,
and azimuthal anglew separately but only via the combined
phase variablef=kz+Mw−vsk,Mdt. Here,k andM are the
axial and azimuthal wave numbers, respectively, andv is the
frequency. In thew−z plane of an “unrolled” cylindrical sur-
face the lines of constant phase,f=f0, are straight with
slope −M /k, as shown in Fig. 1. An azimuthal wave number
M .0 implies a left handed spiral(L-SPI) while M ,0 refers
to right handed spirals(R-SPI) with our convention of taking
k to be positive. The L-SPI and R-SPI being mirror images
of each other under the operationz→−z are symmetry de-
generate flow states. Which of them is realized in a particular
experimental or numerical setup depends on the initial con-
ditions.

With the lines of constant phase in thew−z plane being
oriented for both spiral types obliquely to the azimuthal
“wind” of the basic CCF both spirals are advectively rotated
by the latter like rigid objects. Their common angular veloc-
ity is ẇSPI=vsk,Md /M. This advection enforced rigid-body

rotation of the spiral vortices is also reflected by the fact that
the axial phase velocitieswph=v /k=ẇSPIM /k of a L-SPI
sM .0d and of a R-SPIsM ,0d are opposite to each other;
see Fig. 1. By the same token the rotationally symmetric
sM =0d structure of toroidally closed Taylor vortices is sta-
tionary sv=0d: the lines of constant phases being parallel to
the azimuthal CCF the latter cannot advect these vortices.
However, an externally imposed axial through-flow can ad-
vect Taylor vortices as well as spiral vortices.

The external through-flow breaks the mirror symmetry
between the L-SPI and R-SPI. It changes their rotation and
propagation dynamics as well as their structural properties
and their bifurcation behavior in different ways. This is the
topic of our investigation.

In his review[1] Tagg remarked that a systematic inves-
tigation of nonaxisymmetric vortex states that appear via pri-
mary bifurcations out of the CCF state started remarkably
late in the history of the Taylor-Couette problem. Kruegeret

FIG. 1. (Color online) Lines of constant phases,f=const, for
spirals in thew−z plane. Arrows indicate their velocities.
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al. [3] in 1966 predicted primary transitions to a nonaxisym-
metric rotating-wave flow which then were observed in ex-
periments by Snyder[4], who presented experimental evi-
dence of different types of stable helical flow(referred to as
“spirals”) a few years earlier. In 1985, an experimental sur-
vey was published by Anderecket al. [5] which classified a
large variety of different flow states, including some spiral
types like linear, modulated, interpenetrating, wavy spirals,
etc. An extensive numerical linear stability analysis was then
performed for a wide range of radius ratios by Langfordet
al. [6]. At this time, Tagget al. [7] experimentally observed
a transition from CCF to axially standing and azimuthally
traveling waves(ribbons) and found numerically calculated
wave speeds to be in agreement with experimental results.
Edwards[8] studied the transition from CCF to traveling
waves. More recent experiments were done with a system of
radius ratioh=0.5 [9]. Spiral solutions in a relatively narrow
gap with axially periodic boundary conditions were obtained
numerically with a pseudospectral method using corotating
helicoidal coordinates which were adapted to the expected
spiral [10].

Various effects of an externally imposed axial through-
flow in the Taylor-Couette system have been explored since
the early 1930, so that the list of publications cannot be
discussed here—see, e.g., Ref.[11] for a partial and far from
complete compilation. We mention here in addition a few,
more recent papers on selected topics beyond those listed in
Ref. [11]: a linear analysis of the competition between shear
and centrifugal instability mechanisms[12,13]; linear SPI
and TVF fronts and pulses[14]; a weakly nonlinear bifurca-
tion analysis of axially extended spiral, ribbon, and mixed
vortex states with homogeneous amplitudes[2,15]; theoreti-
cal and numerical investigations of the nonlinear pattern se-
lection in the absolutely unstable regime under downstream
evolving intensity envelopes[11]; theoretical and numerical
analyses of noise-sustained patterns in the convectively un-
stable regime[16] (related experiments are listed in Ref.
[11]); and analysis of the changes in the noise sensitivity
across the convective-absolute stability boundary[17]; and
measurements of velocity fields by particle image velocim-
etry [18].

In this work we explore, in a detailed quantitative inves-
tigation, spatiotemporal structures as well as the bifurcation
properties of spirals and TVF in a setup with corotating and
counter-rotating cylinders of a fixed radius ratioh=0.5 with
and without an externally imposed axial through-flow. Most
calculations were done for axially periodic boundary condi-
tions that impose the wave length of the vortex pattern. How-
ever, a few simulations of finite systems with rigid, nonro-
tating lids were also done to compare with experiments and
to study the effect of phase propagation suppressing bound-
aries. The calculations were done with a time dependent fi-
nite differences method in ther −z plane combined with a
spectral decomposition inw which by construction yields
only the stable flows. However, by selectively suppressing
destabilizing modes we also were able to trace out the un-
stable TVF and SPI solution branches. We do not include in
this work results on ribbons[7], i.e., nonlinear combinations
of L and R spirals[2] since they were unstable for the pa-
rameters investigated here.

In Sec. II we present the notation for describing the Taylor
Couette system and we describe our numerical method. In
Sec. III we review the spatio-temporal properties of TVF and
SPI solutions, and we present results on their bifurcation
behavior and flow structure in the absence of through-flow.
In particular we provide detailed comparisons of the bifurca-
tion and structural properties of these primary vortex states.
Also, comparisons with experiments are presented and dis-
cussed. In Sec. IV we elucidate the effect of an external
through-flow on structure, dynamics, and bifurcation proper-
ties of TVF and SPI methods for counter-rotating cylinders
and stationary outer cylinder. Section V contains a summary
of the main results.

II. SYSTEM

We report results obtained numerically for a Taylor-
Couette system with corotating and counter-rotating cylin-
ders. The ratioh=r1/ r2 of the radiir1 andr2 of the inner and
outer cylinders, respectively, was fixed at the valueh=0.5
for which also experiments have been made recently[9].

A. Theoretical description

We consider the fluid in the annulus between the cylinders
to be isothermal and incompressible with a kinematic viscos-
ity n. The gap widthd=r2−r1 is used as the unit of length
and the momentum diffusion timed2/n radially across the
gap as the time unit so that velocities are reduced byn /d. To
characterize the driving of the system, we use the Reynolds
numbers

R1 = r1V1d/n; R2 = r2V2d/n. s2.1d

These are just the reduced azimuthal velocities of the fluid at
the inner and outer cylinders, respectively, whereV1 andV2
are the respective angular velocities of the cylinders. The
inner one is always rotating counterclockwise, so thatV1 and
R1 are positive. We explore positive as well as negative val-
ues of R2 corresponding to co-rotating as well as counter-
rotation of the cylinders, respectively. We also elucidate the
effect of an externally imposed axial through-flow.

Within the above described scaling, the Navier-Stokes
equation(NSE) takes the form

]tu = =2u − su · =du − = p. s2.2d

Herep denotes the pressure reduced byrn2/d2 andr is the
mass density of the fluid. Using cylindrical coordinates, the
velocity field

u = uer + vew + wez s2.3d

is decomposed into a radial componentu, an azimuthal one
v, and an axial onew.

We have solved the resulting equations subject to no slip
conditions at the cylinders. In Sec. III D we present simula-
tions of systems with an axial sizeG=12 and rigid stationary
ends bounding the annulus axially in order to compare with
experiments[9]. For the main part c.f. Secs. III and IV of this
work, however, we imposed, axially periodic boundary con-
ditions atz=0 andz=G=1.6. So the axial wavelength of the
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TVF and SPI patterns investigated there isl=1.6 and the
wave number isk=2p /l=3.927.

B. Numerical method

The calculations were done with a finite difference
method in ther −z plane combined with a spectral decompo-
sition in w. Since we have also been studying finite length
cylinders, say, with lids bounding the annulus vertically, here
we do not use a spectral decomposition in the axial direction
which for axially periodic systems are a generic alternative.
The discretization(a FTCS—or forward time, centered space
algorithm) has been done on staggered grids in ther −z plane
following the procedure of Ref.[19]. It yields simple expres-
sions for the derivatives, it does not require boundary condi-
tions for the pressure, and it avoids difficulties with bound-
ary conditions for more than one velocity field component at
the same position. We used homogeneous grids with discreti-
zation lengthsDr =Dz=0.05 which have showed to be more
accurate than non-homogeneous grids. The time steps were
Dt,1/3600.

Azimuthally all fields f =u,v ,w,p were expanded as

fsr,w,z,td = o
m=−mmax

mmax

fmsr,z,tdeimw. s2.4d

For the flows investigated here a truncation of the above
Fourier expansion atmmax=8 was sufficient to properly re-
solve the anharmonicities in the fields. The system of
coupled equations for the amplitudesfmsr ,z,td of the azi-
muthal normal modes −mmaxømømmax is solved with the
FTCS algorithm. Pressure and velocity fields are iteratively
adjusted to each other with the method of “artificial com-
pressibility” [20]

dpsnd = − b = ·usnd s0 , b , 1d s2.5d

psn+1d = psnd + dpsnd, s2.6d

usn+1d = usnd − Dt = sdpsndd. s2.7d

The pressure correctiondpsnd in the nth iteration step being
proportional to the divergence ofusnd is used to adapt the
velocity field usn+1d. The iteration loop[Eqs. (2.5)–(2.7)] is
executed for each azimuthal Fourier mode separately. It is
iterated until= ·u has become sufficiently small for eachm
mode considered—the magnitude of the total divergence
never exceeded 0.02 and typically it was much smaller. After
that the next FTCS time step was executed.

For code validation we also compared SPI solutions with
experiments[9] and TVF solutions with previous numerical
simulations[11] and close to onset with Ginzburg-Landau
results[21]. Furthermore, we compared bifurcation thresh-
olds of the nonlinear SPI and TVF solutions with the respec-
tive stability boundaries of the linearized NSE[6,14] ob-
tained by a shooting method described in detail in Ref.[14].
As expected from our experience with primary vortex struc-
tures in the Taylor-Couette and Rayleigh-Bénard problem lie
the FTCS bifurcation thresholds for our discretization typi-
cally 1–2 % below the respective linear stability thresholds.

This deviation significantly reduces for finer discretizations.
We also investigated how the nonlinear solutions change
when varying mmax and/or the grid spacing. From these
analyses we conservatively conclude that typical SPI fre-
quencies have an error of less than about 0.2 % and that
typical velocity field amplitudes can be off by about 3–4 %.
Time steps were always well below the von Neumann stabil-
ity criterion and by more than a factor of 3 below the
Courant-Friederichs-Lewy criterion. In order to trace out the
unstable parts of bifurcation branches of TVF and SPI solu-
tions we applied different stabilization methods that are de-
scribed in Sec. III B 1.

III. SPIRAL VORTICES AND TAYLOR VORTICES

In this section we first briefly review spatiotemporal prop-
erties of spiral vorticessM Þ0d and Taylor vorticessM =0d
in the absence of any externally enforced axial through-flow.
HereM is the azimuthal wave number of the respective vor-
tex structure. Then we present our results on the bifurcation
behavior ofM =0 andM = ±1 vortex solutions and on their
flow structure.

They both grow out of the basic CCF state,uCCF
=vCCFsrdew, that is rotationally symmetric, axially homoge-
neous, and time translationally invariant. Here in our system
with h=1/2 theradial profile of its azimuthal velocity reads

vCCFsrd =
2R2 − R1

3
r +

4R1 − 2R2

3

1

r
. s3.1d

A. Spatiotemporal structure

The spiral vortex structure is periodic inw , z, and t. It
rotates uniformly as a whole like a rigid object in azimuthal
direction thereby translating with constant phase velocity in
axial direction—the spiral fieldsfsr ,w ,z,td do not depend on
w ,z, andt separately but only the phase combination

f = kz+ Mw − vsk,Mdt. s3.2d

Here k is the axial wave number that we always take to be
positive and vsk,Md is the frequency. Thus, with
fsr ,w ,z,td=Fsr ,fd, the spiral pattern is one dimensional.
Comparing the Fourier decompositions

fsr,w,z,td = o
m,n

fm,nsr,tdeismw+nkzd = o
n

Fnsrdeinf = Fsr,fd,

s3.3ad

one finds that

fm,nsr,td = dm,nMe−invtFnsrd. s3.3bd

Thus only the mode combinationsm=nM appear in a SPI
with azimuthal wave numberM.

The SPI phase is constant,f0, on a cylindrical surface,
r =const, along lines given by the equation
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z0 = −
M

k
w +

vsk,Md
k

t +
1

k
f0. s3.4d

Thus, on thew−z plane of such an “unrolled” cylindrical
surface these lines of constant phase are straight with slope
−M /k. And an azimuthal wave numberM .0 implies left
handed spirals whileM ,0 refer to right handed spirals with
our convention of takingk to be positive. The L-SPI and
R-SPI being mirror images of each other under the operation
z→−z are symmetry degenerate flow states. Which of them
is realized in a particular experimental or numerical setup
depends on the initial conditions.

The lines of constant phase and with it the whole spiral
structure rotates inw with an angular velocity

ẇSPI=
v

M
. s3.5d

Its direction strongly depends on the inner cylinder’s rotation
due to the influence of the CCF. The latter decisively deter-
mines the shape of the linear spiral eigenmodes that can
grow beyond the stability boundary of the CCF state against
perturbations with an azimuthal wave numberM Þ0. In the
parameter range explored here the spirals rotate in the same
direction as the inner cylinder, i.e., in a positive-w direction,
so that vsk,Md /M is always positive, i.e.,v=sgnsMduvu.
From this rigid rotation one immediately infers from Eq.
(3.2) that the axial phase velocity

wph =
v

k
=

M

k
ẇSPI s3.6d

of a L-SPIsM .0d is positive and that of a R-SPIsM ,0d is
negative.

For the rotationally symmetricsM =0d structure of toroi-
dally closed Taylor vortices the lines of constant phases are
parallel to ew. This M =0 pattern is stationarysv=0d. The
main reason for this is that the azimuthal flow of the basic
CCF state, being precisely parallel to the vortex lines of con-
stant phase, cannot advect them. However, an axial mean
flow, being perpendicular to them, can advect them: an ex-
ternally enforced axial through-flow of strength Re causes a
nonzero axial phase velocity of the Taylor vortex pattern that
grows linearly with Re, at least when phase pinning effects
are absent as for axially periodic boundary conditions.

B. Bifurcation behavior

In the parameter regime considered here the bifurcation
thresholds for nonlinear SPI and TVF solutions, i.e., the lin-
ear stability boundaries of the CCF state againstM = ±1 and
M =0 vortex perturbations[6] differ only slightly from each
other. For our fixed wave number ofk=3.927 they intersect
at sR1

s=95.25,R2
s=−73.69d where these two different vortex

modes are “bicritical” in the sense that their growth rates are
simultaneously zero. The stability boundaries were obtained
with a shooting method from the linearized NSE. The non-
linear SPI and TVF solutions, that were determined with the
numerical method described in Sec. II B give bifurcation
thresholds that differ as a result of the FTCS discretization

errors by at most 2 % from the linear stability analysis. How-
ever, this difference can grow with externally applied
through-flow up to, say, 5 % at Re.40 (cf. Sec. IV) when
the discretization is not refined.

1. Radial flow amplitudes of TVF and SPI

The bifurcation of both, TVF and SPI solutions is forward
as shown by the bifurcation surface over theR1−R2 plane of
Fig. 2. There the respective vortex solution is characterized
by the primary Fourier amplitude,uum,nu, of the radial flow
intensity at midgap,r =r1+0.5, taken as order parameter with
m denoting the azimuthal mode index andn referring to the
axial one, respectively. Thus, Fig. 2 showsuu0,1u for the TVF
solution by thin lines, anduu1,1u= uu−1,1u for the two symmetry
degenerateM = ±1 solutions by thick lines, respectively. In
each case stable(unstable) solutions are represented by full
(dashed) lines. The different stability regions labeled A–E are
explained in the caption of Fig. 2.

The stability of the vortex states refers to our system with
fixed axial periodicity length. Thus, e.g., Eckhaus or
Benjamin-Feir instabilities[22] that can destabilize periodic
patterns in infinite and large systems do not occur here. Fur-
thermore, our periodic boundary conditions allowing free
phase propagation enhance the existence range as well as the
stability range of SPI solutions in comparison with, say, Ek-
man vortex generating stationary lids that axially close the
annulus in an experimental setup. The latter suppress phase
propagation in their vicinity so that phase generating and
phase destroying defects near opposite boundaries are neces-
sary for the realization of spirals in the bulk of such systems.

In our setup TVF is forR2.R2
s stable close to onset. And

it remains so at least up to the largest value ofR1=130

FIG. 2. (Color online) Order parameter bifurcation surfaces of
TVFs (thin lines) and SPIs(thick lines) over the R1−R2 plane.
Shown are primary Fourier amplitudes,uum,nu, of the radial flow
intensity at midgap,r =r1+0.5, with axial mode indexn= ±1. The
azimuthal one ism=0 for TVFs andm= ±1 for SPIs, respectively.
In each case full(dashed) lines denote stable(unstable) solutions.

Region A B C D E

TVF - stable unstable stable stable

SPI stable - stable unstable stable
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shown in Fig. 2—for largerR1 the TVF eventually undergoes
an oscillatory instability. For more negativeR2,R2

s the TVF
is unstable at onset(region C in Fig. 2) but becomes stable at
largerR1 in region E. The unstable TVF solution branch in
region C was obtained by suppressing anymÞ0 modes in
the field representation(2.4), i.e., by allowing only rotation-
ally symmetric solutions. Lifting this mode restriction infini-
tesimalmÞ0 perturbations drive the system in the parameter
region C of Fig. 2 away from the unstable TVF solution into
a stable SPI state.

Spirals, on the other hand, are forR2,R2
s stable close to

onset and remain so at least up to the largest value ofR1
=130 shown in Fig. 2 while forR2.R2

s they are unstable at
onset(region D in Fig. 2). But then they become stable at
larger R1 in region E. The unstable SPI solution branch in
region D was obtained by suppressingm=0 contributions to
the radial velocity fieldu at mid gap location. This stabilized
the SPI solution against the growth of the TVF. Lifting this
restriction of the available mode space the unstable SPI so-
lutions in region D decay into stable Taylor vortices.

In the relatively large region E both, SPI as well as TVF
solutions coexist bistably and the final vortex structure to be
found here depends on the initial conditions and the driving
history of R1 andR2. Note in particular that for our periodic
boundary conditions the region E with stable spirals extends
to positiveR2, i.e., to a situation with corotating cylinders.

2. SPI freqencies

In Fig. 3 the spiral frequenciesv are plotted over the
same control parameter range as the radial flow amplitudes
in Fig. 2. Also here we include—for the sake of comparison
with Fig. 2—the identification of the different stability re-
gions of TVF and SPI solution by the symbols A–E ex-
plained in the caption of Fig. 2. At onsetv agrees within the
numerical accuracy of our nonlinear code with the eigen-
value resulting from the linear stability analysis of the CCF
state.

The nonlinear SPI frequencies further away from onset
vary smoothly: the bifurcation surface ofv in Fig. 3 has the

shape of a cloth that hangs down from a frame given by the
linear onset spiral frequenciesvsR1,stabd at the stability
thresholdR1,stabsR2d of the CCF. The location of minimalv
on the bifurcation surface is shown by a thick line in Fig. 3.
Thus, the nonlinear SPI frequencies are typically smaller
than the linear ones but do not deviate substantially from
them.

Since the linear onset frequencies show a characteristic
variation along the bifurcation threshold,R1,stabsR2d, that dic-
tates the form of the wholev bifurcation surface, we discuss
them in some detail. They, furthermore allow for a simple,
yet semiquantitive explanation of the phenomenon of rigid
body rotation of spirals in terms of a passive advection dy-
namics of M = ±1 vortex perturbations,eif, with lines of
constant phase,f=kz+Mw−vt, that are oriented obliquely
to the “wind” of the basic azimuthal CCF. To that end, in Fig.
4 we compare the onset spiral frequencyvsR1,stabd at the
stability thresholdR1,stabsR2d of the CCF with the “model”
frequencyvmodelsR1,stabd which is also evaluated at the sta-
bility thresholdR1,stabsR2d. Here

vmodel= kvCCFsrdl =
2

r0
2 − r1

2E
r1

r0

vCCFsrdr dr s3.7d

is the mean of the rotation rate of the CCF,vCCF=vCCF/ r.
For R2,0 the averaging is done over the radial domain be-
tween inner cylinder,r1, and the first zero,r0, of vCCFsrd [Eq.
(3.1)]. Thus, at the stability thresholdR1,stabsR2d one has

r0
2 =

2R2 − 4R1,stab

2R2 − R1,stab
, s3.8d

whenR2,0 However, whenR2ù0, i.e., whenvCCF remains
positive throughout the gapr0 is replaced byr2. The restric-
tion of the radial average to the range betweenr1 and r0 is
motivated by an argument of largely hand-waving nature: the
linear eigenfunctions for marginally stable SPI modes are
somewhat centered to this range where the growth of vortex
perturbations is supported.

FIG. 3. (Color online) Bifurcation diagram ofM = ±1 spiral fre-
quenciesv over the R1−R2 plane. The thick line locates the
minima. The different stability regions A–E of TVF and of SPI
solutions(cf. caption of Fig. 2) in theR1−R2 plane are included for
a better comparison with Fig. 2.

FIG. 4. (Color online) Linear frequencyvsR1,stabd of the M =1
spiral at onset,R1,stabsR2d, in comparison with the frequency
vmodelsR1,stabd [Eq. (3.7)] resulting from a rigid-body rotation
model.
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Figure 4 shows that the onset spiral frequencyvsR1,stabd
agrees perfectly well with the mean CCF rotation frequency
[Eq. (3.7)] when R2.0. For R2,0 the model ansatz(3.7)
for the global spiral rotation rate overestimates slightly the
spiral frequency since Eq.(3.7) does not contain contribu-
tions from negative CCF rotation rates betweenr0 andr2. In
fact, if one extends in an ad hoc way the averaging domain
slightly beyondr0 then the agreement improves significantly.
Thus, the onset spiral frequencyvsR1,stabd, i.e., the frequency
eigenvalue can be seen as the mean rotation rate of the
CCF—albeit weighted appropriately by the critical eigen-
functions.

C. Flow structure of the TVF and SPI

In this section we elucidate the flow structure of spiral
vortices in comparison with Taylor vortices. To that end we
consider the radial velocity field. In Fig. 5 we show the axial
profiles ofuszd at a midgap position forR1=130 being fixed
and variousR2 that cover the whole interval between the
bifurcation thresholds(cf. Fig. 2 and the inset of Fig. 5). Full
(dashed) lines refer to negative(positive) R2. In each case the
axial position of maximal radial outflow is chosen to lie at
z=0.5l. For the sake of better visibility two axial periods of
the vortex profiles are shown.

1. Anharmonicity: TVF versus SPI

Typically SPIs are less anharmonic than TVFs. Also the
profiles of both are less anharmonic for positiveR2 than for
negativeR2 and the degree of anharmonicity increases when
R2 becomes more negative. For the mirror symmetric TVF
this anharmonicity growth comes from a widening(narrow-
ing) of the axial rangeDin sDoutd of radial inflow over which
u,0 su.0d and the corresponding decrease(increase) of
the inflow (outflow) velocity. For the L-SPI that propagate in
Fig. 5 in the positivez direction the anharmonicity grows
mainly by flattening(steepening) the wave profiles ahead of
(behind) the crests. However,Din /Dout increases also for a
SPI albeit less than for a TVF.

The variation of the anharmonicity of the vortex profiles
can be read off more quantitatively from the results of an
axial Fourier analysis. To that end, in Fig. 6 we show the
ratios uun/u1u of the nth and first axial Fourier modes of the
profiles of Fig. 5 as a function ofR2 for fixed R1. With
growing distances from the bifurcation thresholds at positive
and negativeR2 the anharmonicity grows for the TVF as well
as for the SPI. It does so most precipitously near the thresh-
olds at negativeR2 of about −150 in Fig. 6.

At negativeR2 the anharmonicity of the TVF can be for
rapidly counter-rotating cylinders already close to threshold
so large thatuu2/u1u.1. This property reflects the fact that
for sufficiently negativeR2 Taylor vortices are effectively
smaller in size than the gap width. There are two main rea-
sons for this size reduction which are both connected to the
tendency of vortices to have circular shapes:(i) the axial
periodicity lengthl=1.6 reduces theaxial vortex size rela-
tive to the gap and, more importantly,(ii ) the TVF intensity
is radially restricted not to extend significantly beyond the
zero of the CCF atr0 since according to the Rayleigh crite-

FIG. 5. (Color online) Axial profiles of the radial velocityuszd at
the midgap position forR1=130 and variousR2 (along the thick
horizontal line in the inset) covering the whole interval between the
bifurcation thresholds marked TVF and SPI, respectively, in the
inset; see also Fig. 2. Full(dashed) lines refer to negative(positive)
R2. In each case the maximal radial outflow is chosen to lie atz
=0.5l. For better visibility two axial periods of the vortex profiles
are shown. TheM =1 L-SPIs are propagating in positivez direction.
Parameters areh=0.5 andk=3.927.

FIG. 6. (Color online) Anharmonicity of the TVF and SPI. The
ratios uun/u1u of the axial Fourier modes of the profiles ofuszd
shown in Fig. 5 are displayed here as functions ofR2 for fixed R1

=130. The bifurcation thresholds are located at the zeros. Param-
eters areh=0.5 andk=3.927.
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rion m=0 radial momentum transport is suppressed by oppo-
site pressure gradients forr . r0 where the CCF stratification
of the squared angular momentum density is stable. WithR2
becoming more negativer0 moves inwards and the radial
size of Taylor vortices reduce.

However, them=0 Rayleigh criterion does not apply to
the SPI. TheirmÞ0 radial momentum transport extends fur-
ther beyondr0. Therefore SPI vortices fill out the whole gap
more than Taylor vortices,(cf. Fig. 7), and consequently they
are less anharmonic.

2. Mirror symmetry breaking of the SPI

The TVF shows axial mirror symmetry around the posi-
tion of maximal radial outflow,z=0.5l, in Fig. 5. In order to
measure the degree to which this symmetry is broken in the
SPI we have used the asymmetry parameter

P =
E uusz8d − us− z8dudz8

E uusz8d + us− z8dudz8

, s3.9d

evaluated at midgap withz8=0 locating the largest radial SPI
outflow at thisr value. In this way we found, e.g., for the
spirals of Fig. 5, that the smallestP.0.2 occurs for spirals
with the smallest frequencyvmin.23.4 atR2.−74. Increas-
ing R2 from this value all the way toward the upper SPI
bifurcation threshold atR2.48 the frequency increases but
P remains roughly unchanged at about 0.2. On the other
hand, when decreasingR2 from −74 the asymmetry param-
eter increases with increasingv up to P.1 close to the

lower SPI bifurcation thresholdR2.−158. Thus, fast propa-
gating spirals at large negativeR2 show the largest mirror
symmetry breaking.

D. Comparison with experimental results

In order to check our numerical results we made a few
comparisons with experiments. For example, in Fig. 8 we
show the axial profile of the radial flowuszd of a L-SPI at
r1+0.4. Symbols denote laser-Doppler velocimetry measure-
ments[9] and the full line a numerical simulation, both done
in a setup heightG=12 with rigid, nonrotating lids at both
ends of the annulus. In each case the spirals were monitored
at mid-height of the cylinders where they had the common
wavelengthl.1.76. Since absolute experimental velocities
were not available we have scaled the experimental maxi-
mum in Fig. 8 to that of our simulation(full line). Without
knowledge of the experimental error-bars we consider the
agreement between symbols and full line to be satisfactory.

The dashed line shows a numerical profile obtained for
axially periodic boundary conditions imposing the wave-
length l=1.6. It differs slightly from the SPI profile(full
line) in the bulk part of theG=12 system with rigid ends.
The difference is presumably related to the fact that the axial
flow, and in particular the mean-floww0 (4.4), is different in
these two cases as discussed in Sec. IV A 2.

In Fig. 9 we compare the frequency variation of experi-
mental and numerical L-SPI withR1. Symbols and the full
line come from laser-Doppler velocimetry measurements[9]
and numerical simulations, respectively, of the aforemen-
tioned Taylor-Couette setupsh=0.5d of height G=12 with

FIG. 7. Velocity fieldsu,wd of the TVF (left) and L-SPI(right) in an r −z plane. Vertical lines locate the zero of the azimuthal CCF flow
vCCFsrd. Parameters areh=0.5, k=3.927,R1=120, andR2=−100.
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rigid, non-rotating lids at both ends. Note that not only the
frequency values of these experimental and numerical SPI
states agree reasonably well with each other but also their
existence range inR1. Its lower end marks the oscillatory
onset. At the upper end inR1 these SPIs lose their stability to
the TVF—in experiments as well as in the simulations.

However, under axially periodic boundary conditions the
existence range of stable SPIs extends to significantly larger
values ofR1 lying outside of the plot range of Fig. 9. The
dashed line in Fig. 9 refers to simulations done with axially
periodic conditionssl=1.6d that allow for a free propagation
of phase. In addition, they allow the Reynolds-stress-
sustained mean axial floww0 [Eq. (4.4)] to have a finitenet
part kwl [Eq. (4.3)] that is negative for our parameters—cf.
Sec. IV A 2. In order to compare with the SPI frequencies for
rigid end conditions we subtract from the oscillation frequen-
cies under periodic boundary conditions(dashed line) the
pure Galilean contributionkwlk and obtain the dash-dotted
line. Note how close the latter lies to the SPI frequencies in
the system with rigid end conditions. Thus, we find that the
SPI frequency differences[15] for the two different end
boundary conditions are mostly due to whether the Galilean
contributionkwlk is suppressed or not.

IV. EXTERNAL THROUGH-FLOW

Here we discuss the influence of an externally imposed
axial through-flow on spiral and Taylor vortices. Since the
effect of an axial through-flow on a TVF has been investi-
gated forR2=0 in several works, we focus our investigation
on SPI vortices.

The through-flow is enforced by adding in the NSE for
the axial velocity component a constant pressure gradient of

size ]z pAPF throughout the annulus. In the absence of any
vortex flow, i.e., for sub-critical control parameters this pres-
sure gradient,]z pAPF, drives an annular Poiseuille flow
(APF) with a radial profile of the axial through-flow velocity
given by

wAPFsrd =
]z pAPF

4
Fr2 +

1 + h

s1 − hdlnh
ln r

+
s1 + hdlns1 − hd

s1 − hdlnh
−

1

s1 − hd2G . s4.1d

We checked that our numerical code reproduces this analyti-
cal solution(4.1) of the NSE. We use its mean to define the
through-flow Reynolds number by

kwAPFsrdl = Re = −
]z pAPF

8

1 − h2 + s1 + h2dln h

s1 − hd2ln h
.

s4.2d

Hence positive(negative) Re implies an axial flow,wAPFsrd,
in the positive(negative) z direction. The last equality in Eq.
(4.2) establishes the relation between the externally applied
additional axial pressure gradient and the through-flow Rey-
nolds number Re.

FIG. 9. (Color online) Comparison of the frequency variation of
experimental and numerical L-SPIs withR1. Symbols and the full
line come from laser-Doppler velocimetry measurements[9] and
numerical simulations, respectively, of a Taylor-Couette setupsh
=0.5d of heightG=12 with rigid, nonrotating lids at both ends that
enforce the net mean axial flowkwl [Eq. (4.3)] to vanish. The
dashed line refers to a simulation done with axially periodic condi-
tions sl=1.6d. They allow for a finite Reynolds-stress-sustainedkwl
that is negative for our parameters. Upon subtracting this Galilean
contribution kwlk from the oscillation frequency under periodic
boundary conditions(dashed line) one obtains the dash-dotted line
that lies close to the SPI frequencies with rigid end conditions.
Common parameters areR2=−96; however,R2=−100 for the full
line.

FIG. 8. (Color online) Comparison of experimental and numeri-
cal axial profiles of the radial velocityusr1+0.4,zd of a L-SPI. For
better visibility more than one period is shown. Symbols and the
full line denote laser-Doppler velocimetry measurements[9] and
numerical simulations, respectively, of a Taylor-Couette setup of
heightG=12 with rigid, nonrotating lids at both ends. Both refer to
the bulk region at mid height with a common local wavelength of
l.1.76. There the experimental maximum ofu is scaled to our
simulation result. The dashed line refers to a simulation done with
axially periodic conditions imposing a wavelength ofl=1.6. Com-
mon parameters areh=0.5 andR1=111, withR2=−95 for the ex-
periments andR2=−96 for the simulations.
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A. Counter-rotating cylinders

Figure 10 shows how the through-flow influences the
L-SPI, R-SPI, and TVF at the fixed characteristic driving
combinationR1=120 andR2=−100 that is located in Figs. 2
and 3 in region C close to the border to region E. For this
parameter combination the TVF is unstable when Re=0 and
it remains unstable in the Re range shown in Fig. 10. This is
of relevance for the through-flow induced transitions be-
tween the L-SPI and R-SPI(cf. further below).

1. Bifurcation behavior

In Fig. 10(a) we present primary Fourier amplitudes,uum,nu
of the radial flow intensity at midgap versus Re. These are
uu1,1u for the M =1 L-SPI,uu−1,1u for the M =−1 R-SPI, and
uu0,1u for the TVF. Figure 10(b) shows their axial phase ve-
locity, wph=v /k, and Fig. 10(c) shows thenet mean axial
flow

kwl =
1

psr2
2 − r1

2d
E

0

2p E
r1

r2

wsr,w,z,tdrdr dw. s4.3d

For Re=0 the two spirals are mirror images of each other:
their radial velocities are the same and all respective axial
velocities have the same magnitude but opposite direction.
Note that the SPI Reynolds stresses drive an axial flow to be
discussed further below. Its net mean,kwl [Eq. (4.3)], is di-
rected opposite to the phase velocity,wph, of the respective

spiral when Re=0. Note, however, the difference in size be-
tweenuwphu.7.1 andukwlu.1.1 [23].

A finite through-flow breaks the mirror symmetry be-
tween theM =1 L-SPI and theM =−1 R-SPI. Their radial
flow amplitudes evolve with through-flow as shown in Fig.
10(a). We performed also a linear stability analysis of the
combined CCF-APF state. It shows that for our control pa-
rametersR1=120 andR2=−100, the amplitudes of theM
= ±1 SPI solutions go to zero at the bifurcation threshold
values of Re=719.07 and ±50.95. The numerical solutions
of the full nonlinear NSE showed, in addition, that the L-SPI
(R-SPI) is unstable near the first threshold, Re.−19
sRe.19d, and that it is stable near the second one, Re
.50 sRe.−50d.

For small through-flow—say, for −6&Re&6 in Fig. 10—
the two spiral solutions coexist bistably; their particular re-
alization depending on initial conditions. However, with in-
creasinguReu that spiral suffers a through-flow enforced loss
of stability for which the phase velocity changes sign. This
happens roughly when the through-flow has become suffi-
ciently strong to revert an originally adverse axial phase
propagation. For example, theM =−1 R-SPI of Fig. 10
propagates for small Re&6.6 axially downwards(i.e., oppo-
site to the externally imposed through-flow) as for Re=0,
then become stationary, and finally propagates upwards in
through-flow direction for Re*6.6. Similarly, by symmetry,
the M =1 L-SPI propagates in a small negative through-flow
upwards against the through-flow for Re*−6.6 and down-
wards, i.e., in through-flow direction for Re&−6.6.

The direction of the imposed through-flow is the preferred
one for stable phase propagation: A spiral that has started at
small uReu to move against the wind dies out—or, more pre-
cisely, becomes unstable—when the wind becomes suffi-
ciently strong to turn it back. Only that SPI is stable at large
uReu*7.2 in Fig. 10 that keeps propagating into the preferred
direction of the through-flow. The other one is unstable at
large uReu.

The through-flow enforced loss of stability of one SPI
state and the transition to the remaining stable one is indi-
cated schematically in Fig. 10(a) by vertical arrows. How-
ever, we should like to stress that the transition is somewhat
complex extending over the through-flow interval 6& uReu
&7.2 the center of which locates the zero ofwph at uReu
.6.6. In this interval there are stable, mixed states with fi-
nite L- and R-SPI modes. Their amplitudes seem to vary
largely continuously with Re(with possibly some saddle-
node discontinuity) between the pure(SPI) solutions: the
amplitude of the spiral that loses the stability competition
decreases with growinguReu towards zero while the ampli-
tude of the winning one increases from zero to the pure
monostable final SPI state.

Note that since the TVF is unstable for the parameters of
Fig. 10 it does not offer an alternative transition to a final
M =0 state as for the parameters of Sec. IV B. There, for
R2=0, the through-flow induces a transition to a stable
(TVF) rather than to the stably coexisting SPI with preferred
propagation direction. Only when the TVF is eliminated
there does the transition occur to the then monostable
spiral—for details see Sec. IV B.

We also made a few calculations in a regime where
the TVF stably coexists with the SPI for counter-rotating

FIG. 10. (Color online) Influence of an external through-flow on
vortex structures.(a) Primary Fourier amplitudes of the radial flow
field at midgap for theM =1 L-SPI su1,1d, theM =−1 R-SPIsu−1,1d,
and for the TVFsu0,1d. (b) Axial phase velocitywph=v /k. (c) Net
mean axial flowkwl [Eq. (4.3)]. Full (dashed) lines with filled
(open) symbols refer to stable(unstable) states. Arrows indicate
transitions after loss of stability, see text for details. The TVF is
unstable in the Re range shown here for our parametersR1=120,
R2=−100,h=0.5, andk=3.927.
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cylinders. Also then the through-flow preferably induces a
transition to a stable TVF state rather than to a stable SPI
state. Thus, when the through-flow destabilizes, e.g., theM
=−1 R-SPI, then typically theM =0 TVF modes grow rather
than theM =1 L-SPI modes.

2. Axial velocities wph, w0, and Šw‹

In the through-flow range shown in Fig. 10 the phase
velocity wph and the net mean flowkwl vary roughly linearly
with Re. The slopes]wph/] Re and]kwl /] Re for the SPI
well as for the TVF are roughly 1.

While the phase of theM = ±1SPI reverts its propagation
direction at Re. 76.6 the net mean flow changes sign al-
ready at Re. ±1.2. The reversal of the latter does not seem
to have any consequence. But the through-flow enforced re-
versal of the phase velocity seems to be responsible for the
destabilization of the(SPI) that propagate at smalluReu
against the wind, i.e., in the “wrong” direction.

In Fig. 11 we show how the radial profiles of the mean
axial flow,

w0srd =
1

2p
E

0

2p

wsr,w,z,tddw, s4.4d

of spirals shown in Fig. 10 evolve with the through-flow in
the range −4øReø14. We checked thatw0 is independent
of z and t and that our spirals propagating in the externally
imposed axial pressure gradient still have the SPI symmetry,
i.e., the flow fields depend onz,w, and t only via the phase
combination f [Eq. (3.2)] with an oscillation frequency
v that is modified by the through-flow. Then one finds from
the NSE for them=0 azimuthal mode of the axial velocity
field,

S]r +
1

r
D]rw0 = S]r +

1

r
Dsuwd0 + ]zp0, s4.5d

that the SPI mean flow can be driven by Reynolds stresses
and/or by mean axial pressure gradients. For Re=0 the pres-
sure is enforced to be axially periodic, hence]z p0sRe=0d
=0. So in that case the mean axial flow is driven solely by

the nonlinear Reynolds stresses. They are rather large. For
example for the R-SPI propagating at Re=0 in the negative-
z direction with phase velocitywph.−7.1 the maximum of
w0srd is about 3, i.e., directed opposite to the phase propaga-
tion and almost half as large in magnitude aswph. The net
mean flowkwl [Eq. (4.3)] is for this case still about 1.1 and
also opposite towph.

As an aside we mention that rigid axial end conditions
enforcekwl=0 throughout the annulus. They generate an ad-
verse axial pressure gradient that compensates for the Rey-
nolds stresses[25] so thatw0 is practically zero in the bulk
part where SPIs are realized. Only in the Ekman regionw0
becomes finite showing TVF behavior there.

For the R-SPI of Fig. 11 propagating at Re.0 opposite to
the external through-flow the maximal mean flow is located
roughly at midgap. However, for the SPI propagating in the
direction of the external through-flow, i.e., the R-SPI for
Re,0 and the L-SPI for Re.0, the extremum ofw0srd is
shifted towards the inner cylinder. The mean flow profiles of
the spirals of Fig. 11 are given within about 5 % by the
superposition

w0sr ;Red . w0sr ;Re = 0d + wAPFsr ;Red s4.6d

of the pure, Reynolds stress generated floww0sRe=0d of the
respective SPI plus the pure, pressure gradient enforced APF
flow wAPFsRed [Eq. (4.1)]. This holds for the L-SPI as well as
for the R-SPI irrespective of whether they propagate in the
direction of the through-flow or against it.

3. Spiral profiles

The through-flow changes the structure of the SPI. This is
documented in Figs. 12 and 13. The arrows in Fig. 12 rep-
resenting theu,w vector field of the L-SPI in ther −z plane
show the effect of imposing an axial through-flow that in-
creases from Re=−5sad to Re=10sdd in steps of five. Note,
however, that the externally imposed axial pressure gradient
does not just addwAPFsrd to the axial velocity fieldw. It also
modifies all vector field components of the SPI. The axial
profile of the radial flowuszd for example is changed by the
through-flow as shown in Fig. 13 for increasing Re. Here the
axial asymmetry of the upwards propagating L-SPI is re-
duced by steepening up the leading part ofuszd ahead of the
wave crests. This reduction of the mirror-asymmetry of the
radial flow of the L-SPI grows somewhat linearly with in-
creasing Re. As an aside we mention that, on the other hand,
the TVF profiles ofuszd become with increasing Re more
and more asymmetric—the mirror asymmetry parameterP
[Eq. (3.9)] increases for the TVF linearly with Re.

B. Nonrotating outer cylinder

We have also investigated the influence of an externally
imposed axial through-flow on TVFs and SPIs for stationary
outer cylinder,R2=0.

1. Bifurcation behavior

In Fig. 14 we show the bifurcation behavior of TVFs and
SPIs as a function of through-flow Reynolds number Re for

FIG. 11. (Color online) Radial profiles of the axial mean flow
w0srd [Eq. (4.4)] of spirals shown in Fig. 10 for axial Reynolds
numbers −4øReø14 increasing in steps of 2. The thick line refers
to Re=0. The transition from R- to L-SPI occurs around Re.7; cf.
the text. Parameters areR1=120,R2=−100,h=0.5, andk=3.927.
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R2=0, R1=100. This parameter combination lies well within
the region E of Fig. 2 in which the TVF, L-SPI, and R-SPI
are all stable at Re=0.

Switching on the through-flow one sees in Fig. 14(a) how
the dominant modes of these vortex structures vary with Re.
That SPI loses its stability for which the through-flow en-
forces a reversal of the phase propagation as in the case of
counter-rotating cylinders(Fig. 10). Thus, also here the di-
rection of the imposed through-flow is the preferred one for

a stable SPI at largeuReu. A spiral that has started at small
uReu
to move against the through-flow becomes unstable when
the latter becomes sufficiently strong to turn it back. On
the other hand, a SPI remains stable at a largeuReu that
keeps propagating into the preferred direction of the
through-flow.

As in Fig. 10 the loss of stability takes place in the vicin-
ity of the Reynolds number where the axial phase velocity

FIG. 12. Velocity fieldsu,wd of the L-SPI in anr −z plane for Re=−5(a), 0 (b), 5 (c), and 10(d). Parameters areh=0.5, k=3.927,
R1=120, andR2=−100.
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wph [Fig. 14(b)] of the respective SPI goes through zero. This
happens in Fig. 14 for theM = ±1 SPI at Re. 76.4. How-
ever, here we found the transition from the then unstable SPI
to occur to the stable TVF solution[cf. arrows in Fig. 14(a)]
rather than to the other stable SPI.

We have also briefly investigated the situation where the
TVF solution was numerically eliminated(here, suppressing

m=0 modes of theu field at a midgap position turned out to
be an efficient way to globally reduce the TVF towards
zero). Also then, the SPI that is unfavored by the through-
flow loses its stability. However, with the TVF being un-
available as a final state the transition occurs in this case to
the favored SPI in a way that seems to be similar to the one
described in Sec. IV A 1.

Without the above described numerically imposed mode
restriction the TVF is stable for moderate through-flow rates
while at sufficiently largeuReu SPIs are stable[26–28]. For
our parameters the TVF decays at Re. ±34 into an M
= ±1 SPI as indicated by arrows in Fig. 14(a).

For small through-flow the phase velocitywph and the net
mean flow kwl vary roughly linearly with Re. The initial
slopes]wph/] Re and]kwl /] Re are, for SPIs as well as for
TVFs, roughly 1. However, at larger Re one sees in Fig.
14(c) that in particularkwl shows nonlinear corrections.

2. Phase diagram

Figure 15 shows the phase diagram of the TVF, R-SPI,
and L-SPI for stationary outer cylinder in the control param-
eter plane spanned by Re andR1. Theexistencerange of the
vortex states is bounded from below by the bifurcation
threshold(full line in Fig. 15) of the respective vortex solu-
tion out of the combined CCF-APF basic state. These bifur-
cation thresholds result from a linear stability analysis of the

FIG. 13. (Color online) The effect of an external through-flow
on the axial profiles of the radial velocity of the L-SPI. Lines show
uszd at a midgap position for Re=−5 to Re=20 in steps of five.
Thick one refers to Re=0. In each case the maximal radial outflow
is chosen to lie atz=0.5l. Parameters areR1=130, R2=−100, h
=0.5, andh=1.6.

FIG. 14. (Color online) Infiuence of an external through-flow on
vortex structures.(a) Primary Fourier amplitudes of the radial flow
field at midgap for the M =1L- SPI su1,1d, the M =−1 R-
SPI su−1,1d, and for the TVFsu0,1d. (b) Axial phase velocitywph

=v /k. (c) Net mean axial flowkwl−Re. Full (dashed) lines with
filled (open) symbols refer to stable(unstable) states. Arrows indi-
cate transitions after loss of stability, see text for details. Parameters
areR1=100,R2=0, h=0.5, andk=3.927.

FIG. 15. (Color online) R1−Re phase diagram of the TVF,
R-SPI, and L-SPI for a stationary outer cylinder. Solid lines repre-
sent linear stability thresholds of the basic flow, i.e., bifurcation
thresholds of the respective vortex solutions out of the combined
CCF-APF solution. Dashed lines are stability boundaries of the vor-
tex states. The phase diagram is symmetric under Re→−Re. Param-
eters areR2=0, h=0.5, andk=3.927.

Region A B C D E F G H

TVF s s s u - s s s

R-SPI s u - - - u - -

L-SPI s s s s s u u -

s: stable; u: unstable; -: nonexixtent.
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CCF-APF state[14]. The one for the TVF increases quadrati-
cally for small Re. Also the SPI threshold curves in Fig. 15
have a somewhat parabolic shape, but with minima shifted to
finite Re. Thus, the threshold for the L-SPI first decreases for
small positive Re but eventually increases at larger Re. By
symmetry the R-SPI threshold curve in Fig. 15 is a mirror
image under Re→−Re of the L-SPI threshold curve. Hence
small through-flow destabilizes(stabilizes) the CCF-APF
state against spirals that propagate into(against) the through-
flow direction.

Note that for small Re in Fig. 15 the TVF bifurcates first
when increasingR1. But for sufficiently large Re the bifur-
cation sequence of the TVF and SPI is reversed since the
bifurcation threshold for the TVF curves up faster with in-
creasing Re than the one for the L-SPI. After their intersec-
tion stable SPIs bifurcate first out of the CCF-APF state.
Hence, for example in region E of Fig. 15, only stable L
-SPIs exist; in region D TVF exists, but only as an unstable
solution and in region B they both exist bistably.

The dashed lines in Fig. 15 are stability boundaries of the
vortex solutions. Different regions of Fig. 15 between vari-
ous stability boundaries and bifurcation thresholds are iden-
tified with the respective stability properties of the vortex
states in the caption of Fig. 15.

V. SUMMARY

We have numerically simulated vortex flow structures of
different azimuthal wave numbersM in the Taylor-Couette
system with counter-rotating as well as with corotating cyl-
inders. In particular we have investigated the effect of an
externally imposed axial through-flow on the spatiotemporal
properties and on the bifurcation behavior ofM =1 L spirals,
M =−1 R spirals, andM =0 Taylor vortices.

To that end we first have determined for zero through-
flow, Re=0, the bifurcation surfaces of the appropriate order
parameters characterizing SPI and TVF solutions over the
R1−R2 control parameter plane of the inner and outer cylin-
der’s Reynolds numbers. For the parameter combinations ex-
plored in this work these bifurcations out of the basic CCF
state are forward, and their order of appearance determines
the stability of the respective bifurcating vortex state: the
vortex solution that bifurcates second is unstable. But it
eventually becomes stable with increasing distance from the
bifurcation threshold so that, e.g., for largerR1 there is a
large region in theR1−R2 plane with bistability of TVFs and
SPIs. In particular the existence region of stable SPIs extends
for axially periodic boundary conditions even to positiveR2
with corotating cylinders. Unstable solution branches were
obtained by selectively suppressing destabilizing modes.
Stable ribbons, i.e., nonlinear combinations ofM = ±1 spirals
were not found.

Simulations of axially finite systems with rigid, nonrotat-
ing lids showed, in good agreement with experiments, how
the stable existence range of SPIs is reduced by stationary
Ekman vortices which suppress phase propagation at the two
ends. Also the frequencies and wave profiles of the spiral
vortices in the bulk of the numerical and experimental sys-
tems agreed well with each other. Spiral profiles obtained for

periodic and rigid end conditions do not differ much. On the
other hand, the respective frequencies differ basically by the
Galilean contributionkwlk Here kwl is the net axial mean
flow that the nonlinear Reynolds stresses of a spiral with
axial wave numberk sustains with axially periodic end con-
ditions but not with impermeable ends.

Furthermore, we showed how the phenomenon of rigid
body rotation of spirals can be understood quantitatively in
terms of the passive advection dynamics ofM = ±1 vortex
perturbations whose lines of constant phase are oriented ob-
liquely to the azimuthal CCF. The onset spiral frequency is
the mean rotation rate of the CCF, albeit weighted appropri-
ately by the critical eigenfunctions with the consequence that
the L-SPI as well as the R-SPI rotate in the same direction as
the inner cylinder. The nonlinear SPI frequencies are typi-
cally smaller than the linear ones but do not deviate substan-
tially from them.

A finite through-flow breaks the mirror symmetry be-
tween the L-SPI and R-SPI, and changes the structure of the
SPI. The externally imposed axial pressure gradient does not
just add the annular Poiseuille flowwAPFsrd to the axial ve-
locity field. It modifies thr SPI structure, e.g.,the profiles of
the radial flow in a characteristic way.

For Re=0 L-SPIs propagate axially upwards and R-SPIs
downwards. When they are initially stable they continue to
coexist bistably for small through-flow. However, they are no
longer mirror images of each other and their phase velocities
differ by an amount~Re. Then, with increasinguReu that
spiral loses its stability for which the through-flow enforces
the phase velocity to change direction. Only that SPI is stable
at a largeuReu that keeps propagating into the preferred di-
rection of the through-flow. The other one is unstable at large
uReu.

The SPI that loses stability upon reverting its propagation
direction —i.e. the R-SPI(L-SPI) for positive (negative)
Re—preferentially undergoes a transition to propagating
TVF provided the latter is available as astablevortex state.
Otherwise the transition is to the then monostable L-SPI(R-
SPI). Such a situation was explored in detail for negativeR2
where the TVF was unstable and for other parameter combi-
nations where the TVF solution was eliminated numerically.

Also the situation where initially at Re=0 all three vortex
solutions are stable was elucidated for differentR1−R2 pa-
rameter combinations and in more detail for a stationary
outer cylinder,R2=0. Here, a complete phase diagram was
determined in the control parameter plane spanned by Re and
R1. We found that a small through-flow destabilizes(stabi-
lizes) the basic CCF-APF state against spirals that propagate
into (against) the through-flow direction. For sufficiently
large Re the bifurcation sequence of TVFs and SPIs is re-
versed since the bifurcation threshold for TVF curves up
faster with increasing Re than the one for the L-SPI. After
their intersection stable SPIs bifurcate first out of the CCF-
APF state. Then there opens up a region at sufficiently large
positive Re in which only stable L-SPI but no Taylor vortices
exist for stationary outer cylinder.
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